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Abstract. In this note, we shall give a self-righteous observation on rational
points on elliptic curves from the classical number theoretic view point.

1. Rational points on arithmetic curves

It is well-known that, as the genus of curves gets higher, the number of rational
points (or integral points) on arithmetic curves decreases. Especially, we shall
investigate how rational points (or integral points) behave when they move from
a curve of genus 0 to a curve of genus 1.

2. L-function of elliptic curves and Dedekind zeta function

For an elliptic curve E over Q, the Birch and Swinnerton-Dyer conjecture
predicts that the rank of Mordell-Weil group E(Q) is equal to the order of the
zero of L(E, s) at s = 1. On the other hand, for an algebraic number field K
over Q, there is a similar formula which states that the number of generators of
the unit group O∗

K can be described by the order of the zero of Dedekind zeta
function ζK(s) at s = 0. In particular, when K is a real quadratic extension of
Q, the number of generators of the unit group O∗

K is equal to 1 and these unit
elements correspond to integral points on a quadratic curve x2 −Dy2 = 1 (Pell
equation). It seems to me that, when they move from this quadratic curve to an
elliptic curve, these integral points may turn into rational points.

3. Rational points and unit elements

3.1. Some histories. Traditionally, units elements have played an important
role for calculating arithmetic invariants and have been closely related to ratio-
nal points. For example, in proving the Dirichlet’s Unit Theorem, finding one
of generators of O∗

K is equivalent to finding an integral point on some parallel-
ogram. Furthermore, Siegel’s Theorem on the finiteness of integral points on
y2 = f(x) (f(x) ∈ Q[x], deg(f(x)) ≥ 3) is deduced from the finiteness of certain
unit elements,...et al. In a modern language, unit elements such as elliptic units
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or Kato’s elements form an Euler system and are used to calculate the L-value
which is closely related to rational points.

This is one of the reasons why it seem to me that integral points on a Pell
equation x2 − Dy2 = 1 which represent unit elements of O∗

K may be converted
into rational points on an elliptic curve. Furthermore, this conversion corresponds
to the fact that, as the genus of curves gets higher, the number of rational points
(or integral points) on arithmetic curves decreases.

3.2. From Pell equations to an elliptic curve. For simplicity, assume that
K is a real quadratic extension of Q and that E is an elliptic curve over Q
whose Mordell-Weil group is of rank 1. Let χK (resp. χQ) denote the Dirichlet
character such that we have ζ(s)L(χK , s) = ζK(s) (resp. ζ(s)L(χQ, s) = ζQ(s)).
Furthermore, take the rational newform f of weight 2 such that we have L(E, s) =
L(f, s). Then, we have

(∗) L(χK , 0)L(χQ, 0) = L(χK(−1), 1)L(χQ(−1), 1) ∼ L(f, 1) = L(E, 1)

where ∼ means that both sides have the same order and both leading terms are
connected by a homotopy method.

Remark

(1) This identification is a very rough one and we may consider a more refined
version which preserves arithmetic invariants such as conductors. In those
cases, it will be quite interesting to study the orders of Selmer groups.

(2) The unit elements of Z∗ can be corresponded to the integral points on the
Pell equation of the form x2 − n2y2 = 1 (n ∈ N) and this equation has
only trivial integral points.

By the formula (∗) above, we can regard that two Pell equations which come
from unit groups O∗

K and Z∗ melt into the elliptic curve E over Q whose Mordell-
Weil group is of rank 1 and that the integral points on one Pell equation turn
into the (non-torsion) rational points on the elliptic curve E.

Remark

(1) Since the L-function L(P1, s) is trivial, one cannot obtain any interesting
information by considering two L(P1, s). In this note, we make use of the
Pell equation which can be regarded as “P1 with many unit elements”.

(2) By the same method (∗) above, we can find two Dirichlet L-functions
which can be connected to L(E, 1) with a higher order. If we assume that
the Birch and Swinnerton-Dyer conjecture holds, one can say that the
(non-torsion) rational points on an elliptic curve are all parametrized by
the unit elements of O∗

K and O∗
L for some number fields K and L.
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4. Comments on zeta elements

4.1. Preliminary.

4.1.1. Numerical invariants. An Euler system is a collection of classes in the
Galois cohomology H1(K,−) which satisfies good Galois equivariant properties.
Since its functoriality describes the local factors of L-functions, one can say that
an Euler system is closely related to numerical (or local) invariants such as the
number of Fp-valued points,...et al.

4.1.2. Geometric invariants. (See [M1]) Let U be a smooth and separated scheme
of finite type over C and X be a smooth compactification of U such that D =
X\U is a globally normal crossing divisor. Then, by using the z-structure and
ω-structure, one can investigate whether a cycle exists on schemes and how a
cycle intersects with other cycles. Imitating the concept of Euler systems, let us
consider Ext1GMHS(QM ,−). Gathering a good collection of classes in this extension
group, one may deduce geometric (or global) invariants of L-functions such as
periods, regulators,...et al.

4.2. Refinements. Let X be a smooth proper scheme over Q. Then, we have
the étale cohomology group Hét(X ×Q,Ql) equipped with the continuous action
of G = Gal(Q/Q). On the other hand, let GS denote the analogous category
of GMHS whose objects are Ql-vector spaces equipped with the z-structure and
ω-structure and morphisms are given in an evident way. By using the z-structure
and ω-structure with respect to X, Hét(X,Ql) can be regarded as an object of
GS. Then, we have a natural morphism of Ql-vector spaces

Ext1GS(Ql,M , Hét(X,Ql)) → Ext1GS(Ql,M , H1(G,Hét(X,Ql)))

where Ql,M is a one dimensional Ql-vector space equipped with the z-structure
and ω-structure with respect toX. One can say that a good collection of classes in
Ext1GS(Ql,M , H1(G,Hét(X,Ql))) would connect the numerical (or local) invariants
with the geometric (or global) invariants and would be a good candidate of zeta
elements. Furthermore, let Y (resp. Z) be a smooth proper scheme over Q and
cY (resp. cZ) denote such a good element in the extension group above. Then,
the elements

tcY + (1− t)cZ (0 ≤ t ≤ 1)

have good functorial properties which are deduced from those of cY and cZ and
know the topological aspects of numerical and geometric invariants.
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