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Abstract. In this paper, from the standpoint of quantum field theory, we shall
study an analogous theory with the deformation theory of elliptic curves over Q
obtained in [Mo2].

1. Special relativity

Let A be an object on the ground and B be an object moving at the constant
speed V . Then, by the theory of special relativity, A sees that time goes more
slowly around B than B itself feels. It is assumed that this phenomena, regardless
of the presence or absence of A and B, results from the Lorentz transformation
between the stationary inertial frame of reference with A and the inertial frame
of reference moving with B. In this paper, however, we will regard that time of
flow is adjusted by exchanging the virtual propagators between A and B. For
example, in the case V = 0, A and B share the same time and, in the case V = c
(the speed of light), A sees that time stops around B.

A •
light //________ • B +3 light //_____

Let us consider the situation above. A person on the ground sees that both of
the light from the stationary object A and the light from the object moving at the
speed V move at the speed c and that the formula of vectors is not established.
In [Mo3], we set up a mathematically virtual space where the formula of vectors
is concluded.
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A person on the ground can see only the x-axis and the formula of vectors is
concluded in this mathematically virtual world (x-y plane) which is invisible to
the person. Even if the object B moves at the more speed, the person on the
ground will see that the light from the object B always moves at the speed c.
Thus, it is no wonder that, if the object B moves faster, the more momentum is
annihilated to the direction of y-axis and this quantity does not contribute to the
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observation at the object A. Therefore, we can think of the virtual propagators
adjusting time of flow as the virtual propagators adjusting momentum. That
is to say, these virtual propagators send the distortion of space-time from the
object A and these propagators will play an key role in the deformation theory
of quantum fields.

2. Deformation theory of quantum fields

2.1. Modularity and wave nature. We denoted in [Mo3] that, in number
theory, there exists each different world for each prime number and similarly that,
in physics, there exists each different world for each inertial frame of reference.
Furthermore, in [Mo4], when the set of all momentum is quantized, we obtained
analogous results in physics with results obtained in number theory. The reason
why we studied such analogies is that we think that the modularity in number
theory is similar to the wave nature in physics.

2.2. Modular forms. Before we study the deformation theory of quantum fields,
let us review the deformation theory of elliptic curves over Q ([Mo2]). For an
elliptic curve E over Q, its holomorphic differential form f(z) (called modular
form) is defined over the upper half space H and is invariant under the modular
group. As significant nature, the Fourier expansion of this modular form is given
by

f(z) =
∞∑
n=1

an(f)q
n (an(f) ∈ C, q = e2πiz)

and we have the equality ap = 1 + p − ♯E(Z/pZ) for almost all prime numbers
p which contains information about the elliptic curve modulo p. It should be
noted that, if n is a composite number, the coefficients an is determined by
{ap}p:prime. On the other hand, each coefficient cannot be selfish behavior since
it is determined by the global elliptic curve E over Q. In fact, it is known that a
modular form is determined if almost all the Fourier coefficients are determined.
This property is called modularity in number theory. In [Mo2], we studied how
the rational points on elliptic curves behave when each Fourier coefficient ap is
deformed continuously.

2.3. Deformation theory of quantum field operators. The coefficients of
the momentum expansion of a quantized wave function cannot be also selfish be-
havior by the wave nature. The aim of this paper is to deform these coefficients
continuously and study their behaviors. Concretely, consider the quantum field
operator ϕ(x, t) of a quantized wave function and write its momentum expansion
by the creation-annihilation operators {ap} and {a†p}. Then, deform these coeffi-
cients continuously. This deformed function no longer has any regularity derived
from the wave nature.
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2.4. Mathematical interpretations. There exists each different world for each
prime number in number theory and similarly there exists each different world
for each inertial frame of reference in physics. Based on this thing, we focus
on one momentum p and we consider a function ϕ′(x, t) which is obtained by
deforming the coefficients of ap and a†p continuously. Let us regard that the
propagators in the previous section are emitted to the virtual wave ϕ′(x, t) from
the stationary object A. Then, these propagators feel the state change of the
world for the inertial frame of reference with the momentum p. Conversely, we
can say that a new space-time without regularity of the wave nature is created
by these propagators.

3. Some comments

3.1. As mathematical methods. It is difficult to treat the quantum field op-
erators strictly but if we consider a new space-time without regularity of the wave
nature, we expect that we can use the topological methods in studying quantum
field theory. This is an analogy with the methods by which we research the topo-
logical aspects of the arithmetic elliptic curves over Q. Furthermore, in Feynman
diagrams, the virtual propagators in Section 1 will be useful to visualizing the
changes of space-time.

3.2. Application to string theory. In string theory, it is believed that the
dimension of space-time is 10 or 26 and that the reason why we regard this world
as the 4 dimensional world is that the superfluous dimensions are rounded small
by the compactification. Assume that a string turns round the inner space with
the wave nature. By deforming the world of each momentum p continuously, let
us consider a new space-time without regularity of the wave nature. Then, in
that new space-time, the future of the string will be observed as straddling the
inside and outside of the inner space.

3.3. Inner structure of a string. By string theory, it is believed that all sub-
stances consist of not points but strings. Then, it is interesting to consider the
inner structure of a string. Let us interpret this by using the new space-time
introduced above. The difference between a string and its deformed string will
be a point as a limit when we narrow two strings again. It is natural to think
of this point as the inner structure of a string. We cannot observe this limit
point in our space-time. We can regard, however, that, only after we set up the
new space-time introduced above, the virtual propagators sending the distortion
of space-time will capture this inner structure. Alternatively, we can think that
these propagators make this new space-time and as a result, this inner structure
is created.
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