ON THE TOPOLOGICAL ASPECTS OF ARITHMETIC ELLIPTIC CURVES

KAZUMA MORITA

Abstract

In this short note, we shall construct a certain topological family which contains all elliptic curves over \mathbb{Q} and, as an application, show that this family provides some geometric interpretations of the Hasse-Weil L-function of an elliptic curve over \mathbb{Q} whose Mordell-Weil group is of rank ≤ 1.

1. Introduction

For any elliptic curve E over \mathbb{Q}, there exists a rational newform f such that we have $L(E, s)=L(f, s)$ and, in particular, the Fourier expansion of f tells us the eigenvalues of the Frobenius operator acting on the Tate module of the strong Weil curve modulo p. In this paper, we shall deform the Fourier expansion of f with respect to the arguments $\left\{\theta_{p}\right\}_{p}$ of these eigenvalues and construct a topological family attached to these deformed differential forms. This family contains all elliptic curves over \mathbb{Q} up to isogeny and we expect that we can deduce the arithmetic facts by using the topological methods. Actually, as an application, if E is an elliptic curve over \mathbb{Q} whose Mordell-Weil group is of rank ≤ 1, we will show that this family provides some geometric interpretations of the Hasse-Weil L-function of E.

2. Review of the classical theory

Let \mathbb{H} be the upper half-plane and $\mathbb{H}^{*}=\mathbb{H} \cup \mathbb{Q} \cup\{\infty\}$ be the extended upper half-plane which is obtained by adding the cusps $\mathbb{Q} \cup\{\infty\}$. The modular group $\Gamma=\mathrm{PSL}_{2}(\mathbb{Z})$ acts discontinuously on \mathbb{H} via linear fractional transformations. Let $\Gamma_{0}(N)$ denote the congruence subgroup

$$
\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma \right\rvert\, c \equiv 0(\bmod N)\right\}
$$

of Γ. The space of cusp forms of weight 2 for $\Gamma_{0}(N)$ will be denoted by $S_{2}(N)$. Then, every cusp form $f(z) \in S_{2}(N)(z \in \mathbb{H})$ has the Fourier expansion

$$
f(z)=\sum_{n=1}^{\infty} a_{n}(f) q^{n} \quad\left(a_{n}(f) \in \mathbb{C}, q=e^{2 \pi i z}\right)
$$

Date: April 14, 2016.
1991 Mathematics Subject Classification. 11F03, 11G05, 11G40.
Key words and phrases. modular forms, elliptic curves, L-functions,

We say that $f(z)$ is a normalized cusp form if we have $a_{1}(f)=1$. On the other hand, the space of cusp forms $S_{2}(N)$ is equipped with the Hecke operators:

$$
\begin{array}{ll}
\text { - } T_{p}: f(z) \mapsto p f(p z)+\frac{1}{p} \sum_{r=0}^{p-1} f\left(\frac{z+r}{p}\right) & \\
\text { - } U_{p}: f(z \nmid N(p: \text { prime })) \\
p \sum_{r=0}^{p-1} f\left(\frac{z+r}{p}\right) & \\
(p \mid N(p: \text { prime })) .
\end{array}
$$

Now, we are concerned with a rational newform f : a normalized cusp form of weight 2 which has the rational Fourier expansion, is a simultaneous eigenform for all the Hecke operators and is a newform in the sense of [AL]. Let δ_{N} denote the character defined by $\delta_{N}(p)=1$ if $p \nmid N$ and $=0$ if $p \mid N$.
Proposition 2.1. Let $f(z)=\sum_{n=1}^{\infty} a_{n}(f) q^{n}$ be a rational newform. Then, the Fourier expansion of $f(z)$ satisfies the following conditions.
(1) $a_{p^{r+1}}(f)=a_{p}(f) a_{p^{r}}(f)-\delta_{N}(p) p a_{p^{r-1}}(f) \quad(r \geq 1)$
(2) $a_{m n}(f)=a_{m}(f) a_{n}(f) \quad((m, n)=1)$.

Given a rational newform f, we consider an associated period lattice

$$
\Lambda_{f}=\left\{\int_{\alpha}^{\beta} f(z) d z \mid \alpha, \beta \in \mathbb{H}^{*}, \alpha \equiv \beta\left(\bmod \Gamma_{0}(N)\right)\right\}
$$

which is a discrete subgroup of \mathbb{C} of rank 2 . Then, it is known that the quotient $E_{f}=\mathbb{C} / \Lambda_{f}$ is an elliptic curve over \mathbb{Q} of conductor N and that we have $L\left(E_{f}, s\right)=$ $L(f, s)$ where the LHS denotes the Hasse-Weil L-function of E_{f} and the RHS denotes the Dirichlet L-series of f. Conversely, for any elliptic curve E over \mathbb{Q}, there exists a rational newform f such that we have $L(E, s)=L(f, s)$ ([Wi], $[\mathrm{TW}],[\mathrm{BCDT}])$. From this equality, we have the following result.
Proposition 2.2. For any prime $p \nmid N$, we have $a_{p}(f)=1+p-\# E_{f}\left(\mathbb{F}_{p}\right)$ and there exists $0 \leq \theta_{p} \leq \pi$ such that $a_{p}(f)=2 p^{\frac{1}{2}} \cos \left(\theta_{p}\right)$.

3. Deformation of the Fourier expansion

In this section, we shall deform the Fourier expansion of a rational newform with respect to the arguments $\left\{\theta_{p}\right\}_{p}$ (Proposition 2.2).
Definition 3.1. Let $F(z)=\sum_{n=1}^{\infty} a_{n}(F) q^{n}$ be a formal power series in $\mathbb{C}[[q]]$ which satisfies the following conditions.
(1) If there exists a rational newform $f(z)$ such that we have $a_{p}(f)=a_{p}(F)$ for almost all primes p, put $F(z)=f(z)$. The coefficients of $F(z)$ are determined by Proposition 2.1 and 2.2.
(2) If there does not exist such a rational newform, assume that $F(z)$ is normalized (i.e. $a_{1}(F)=1$) and that, for each prime p, there exists $0 \leq \theta_{p}^{F} \leq \pi$ such that we have

$$
a_{p}(F)=2 p^{\frac{1}{2}} \cos \left(\theta_{p}^{F}\right)
$$

Furthermore, the following compatible conditions are satisfied.
(a) $a_{p^{r+1}}(F)=a_{p}(F) a_{p^{r}}(F)-p a_{p^{r-1}}(F) \quad(r \geq 1)$
(b) $a_{m n}(F)=a_{m}(F) a_{n}(F) \quad((m, n)=1)$.

Fix a power series $F(z) \in \mathbb{C}[[q]]$ as above. Let $\left\{\gamma_{i}\right\}_{i=1,2}$ denote any smooth path from α_{i} to β_{i} in \mathbb{H}^{*}. Consider an associated period lattice

$$
\Lambda_{F}\left(\gamma_{1}, \gamma_{2}\right)=\left\{\int_{\alpha_{i}}^{\beta_{i}} F(z) d z \mid \alpha_{i} \stackrel{\gamma_{\mathrm{i}}}{\sim} \beta_{i}\right\}_{i=1,2} .
$$

Note that, contrary to Λ_{f}, this $\Lambda_{F}\left(\gamma_{1}, \gamma_{2}\right)$ does not form a discrete subgroup of \mathbb{C} depending on the choice of $\left\{\gamma_{i}\right\}_{i=1,2}$. Thus, the quotient $E_{F}\left(\gamma_{1}, \gamma_{2}\right)=$ $\mathbb{C} / \Lambda_{F}\left(\gamma_{1}, \gamma_{2}\right)$ is not an elliptic curve in general.

Definition 3.2. With notation as above, let Θ denote the topological family $\left\{E_{F}\left(\gamma_{1}, \gamma_{2}\right)\right\}$ where F (resp. $\left.\left\{\gamma_{i}\right\}_{i=1,2}\right)$ runs through any power series as in Definition 3.1 (resp. any smooth path in \mathbb{H}^{*}).
Remark 3.3. We can say that this topological family Θ is the smallest in the sense that it contains all elliptic curves over \mathbb{Q} up to isogeny and the associated rational newforms are all parametrized by the arguments $\left\{\theta_{p}\right\}_{p}$.

4. Applications

4.1. The case of rank 0 . For any elliptic curve E over \mathbb{Q}, the Birch and Swinnerton-Dyer conjecture predicts that the rank of Mordell-Weil group $E(\mathbb{Q})$ is equal to the order of the zero of $L(E, s)$ at $s=1$. In the case that we have $L(E, 1) \neq 0$, it is known that the Mordell-Weil group of E is of rank 0 ([CW]). Now, assume that E is such an elliptic curve and that f is an associated rational newform satisfying $L(E, s)=L(f, s)$. Since the Dirichlet L-series $L(f, s)$ can be written via Mellin transform

$$
L(f, s)=(2 \pi)^{s} \Gamma(s)^{-1} \int_{0}^{i \infty}(-i z)^{s} f(z) \frac{d z}{z}
$$

where $\Gamma(s)$ denotes the gamma function of s, the period integral $\int_{0}^{i \infty} f(z) d z$ does not vanish. Let I denote any smooth path from 0 to $i \infty$ in \mathbb{H}^{*}.

Example 4.1. Let $\left\{E_{i}\right\}_{i=1,2}$ be two elliptic curves over \mathbb{Q}. Assume that there exist a set of formal power series $\{F(z)\}_{F}$ as in Definition 3.1 and a set of smooth paths $\{J\}_{J}$ in \mathbb{H}^{*} such that $\left\{E_{F}(I, J)\right\}_{F, J}$ forms a topological family of (nondegenerate) elliptic curves connecting E_{1} and E_{2}. Then, Mordell-Weil groups of $\left\{E_{i}\right\}_{i=1,2}$ are of rank 0 .
4.2. The case of rank 1. First, we shall recall the results of [GZ]. Let K be an imaginary quadratic field whose discriminant D is relatively prime to the level N of the rational newform f and let H denote the Hilbert class field of K. Fix an element σ in $\operatorname{Gal}(H / K)$. Note that this Galois group is isomorphic to the class
group Cl_{K} of K. Let \mathcal{A}_{K} be the class corresponding to σ and let $\theta_{\mathcal{A}_{K}}(z)$ denote the theta series

$$
\theta_{\mathcal{A}_{K}}(z)=\sum_{n \geq 0} r_{\mathcal{A}_{K}}(n) q^{n} \quad\left(q=e^{2 \pi i z}\right)
$$

where $r_{\mathcal{A}_{K}}(0)=\frac{1}{\sharp\left(\mathcal{O}_{K}^{*}\right)}\left(\mathcal{O}_{K}\right.$: the ring of integers in $\left.K\right)$ and $r_{\mathcal{A}_{K}}(n)(n \geq 1)$ is the number of integral ideals α in the class of \mathcal{A}_{K} with norm n. Define the L-function associated to the rational newform $f=\sum_{n} a_{n} q^{n} \in S_{2}(N)$ and the ideal class \mathcal{A}_{K} by

$$
L_{\mathcal{A}_{K}}(f, s)=\left(\sum_{n \geq 1,(n, D N)=1} \epsilon_{K}(n) n^{1-2 s}\right) \cdot\left(\sum_{n \geq 1} a_{n} r_{\mathcal{A}_{K}}(n) n^{-s}\right)
$$

where $\epsilon_{K}:(\mathbb{Z} / D \mathbb{Z})^{*} \rightarrow\{ \pm 1\}$ denotes the character associated to K / \mathbb{Q}. Furthermore, for a complex character χ of the ideal class group of K, denote the total L-function by

$$
L(f, \chi, s)=\sum_{\mathcal{A}_{K}} \chi\left(\mathcal{A}_{K}\right) L_{\mathcal{A}_{K}}(f, s) .
$$

Then, it is known that both of $L_{\mathcal{A}_{K}}(f, s)$ and $L(f, \chi, s)$ have analytic continuations to the entire plane and satisfy functional equations $(s \leftrightarrow 2-s)$. Furthermore, if we put $L_{\epsilon_{K}}(f, s)=\sum_{n} \epsilon_{K}(n) a_{n} n^{-s}$ for $f=\sum_{n} a_{n} q^{n}$, we have $L(f, s) L_{\epsilon_{K}}(f, s)=L(f, \mathbf{1}, s)$. Note that $L_{\epsilon_{K}}(f, s)$ is the Hasse-Weil L-function of E^{\prime} over \mathbb{Q} where E^{\prime} denotes the twist of E over K ([GZ, p.309, 312]). The following thing is one of the main results of Gross-Zagier.

Proposition 4.2. ([GZ, p.230]) There exists a cusp form $g_{\mathcal{A}_{K}}$ of weight 2 on $\Gamma_{0}(N)$ such that we have

$$
L_{\mathcal{A}_{K}}^{\prime}(f, 1)=32 \pi^{2} \sharp\left(\mathcal{O}_{K}^{*}\right)^{-2}|D|^{-\frac{1}{2}} \cdot\left(g_{\mathcal{A}_{K}}, f\right)_{N}
$$

where $(,)_{N}$ denotes the Petersson inner product on cusp forms of weight 2 for $\Gamma_{0}(N)$. Thus, this formula leads to

$$
L^{\prime}(f, \chi, 1)=\sum_{\mathcal{A}_{K}} \chi\left(\mathcal{A}_{K}\right) L_{\mathcal{A}_{K}}^{\prime}(f, 1)=32 \pi^{2} \sharp\left(\mathcal{O}_{K}^{*}\right)^{-2}|D|^{-\frac{1}{2}} \cdot\left(\sum_{\mathcal{A}_{K}} \chi\left(\mathcal{A}_{K}\right) g_{\mathcal{A}_{K}}, f\right)_{N}
$$

Now, let E be an elliptic curve over \mathbb{Q} such that $L(E, s)=L(f, s)$ for some rational newform $f \in S_{2}(N)$. Assume that we have $\operatorname{ord}_{s=1} L(E, s)=1$. In this case, it is known that the Mordell-Weil group of E is of rank 1 ([Ko]). Furthermore, since the sign of the functional equation of $L(E, s)=L(f, s)$ is -1 , we can choose an imaginary quadratic extension K / \mathbb{Q} such that $L_{\epsilon_{K}}(f, 1) \neq 0([\mathrm{Wa}])$. In particular, it follows that we obtain $L^{\prime}(f, \mathbf{1}, 1) \neq 0$ and thus $\left(\sum_{\mathcal{A}_{K}} \mathbf{1}\left(\mathcal{A}_{K}\right) g_{\mathcal{A}_{K}}, f\right)_{N} \neq 0$. Let $\left\{g_{i}\right\}_{i=1}^{d}$ (resp. $\left\{h_{j}\right\}_{j=1}^{e}$) denote a basis of the space of newforms (resp. oldforms) in $S_{2}(N)$ over \mathbb{C}. If we write $\sum_{\mathcal{A}_{K}} \mathbf{1}\left(\mathcal{A}_{K}\right) g_{\mathcal{A}_{K}}=\sum_{i=1}^{d} a_{i} g_{i}+\sum_{j=1}^{e} b_{j} h_{j}$ $\left(a_{i}, b_{j} \in \mathbb{C}\right)$, put $G_{K}=\sum_{i=1}^{d} a_{i} g_{i} \in S_{2}(N)$.

Definition 4.3. Let $F(z) \in \mathbb{C}[[q]]\left(q=e^{2 \pi i z}\right)$ be a formal power series as in Definition 3.1. Fix a fundamental domain R in \mathbb{H} for $\Gamma_{0}(N)$. We say that $F(z)$ is of level N with respect to R if we have

$$
\left(G_{K}, F(z)\right)_{N, R}:=\int_{R} G_{K} \cdot \overline{F(z)} d x d y \neq 0 \quad(z=x+i y)
$$

for some imaginary quadratic extension K / \mathbb{Q} whose discriminant is relatively prime to N.

Example 4.4. Let us consider the following two cases.
(1) Let $\{F(z)\}_{F}$ be a set of formal power series of level N with respect to R such that we have $L(F, 1):=-2 \pi i \Gamma(1)^{-1} \int_{0}^{i \infty} F(z) d z=0$ and let $\{I, J\}_{I, J}$ denote a set of smooth paths in \mathbb{H}^{*}. Assume that two elliptic curves $\left\{E_{i}\right\}_{i=1,2}$ over \mathbb{Q} of conductor N are connected by the topological family $\left\{E_{F}(I, J)\right\}_{F, I, J}$. Then, Mordell-Weil groups of $\left\{E_{i}\right\}_{i=1,2}$ are of rank 1.
(2) On the other hand, let \mathbb{E}_{1} (resp. \mathbb{E}_{2}) be an elliptic curve over \mathbb{Q} of conductor $N\left(\right.$ resp. $\left.N^{\prime}\right)$. Here, N^{\prime} denotes a positive integer such that $N^{\prime} \mid N$ and $N^{\prime}<N$. Assume that the Mordell-Weil group of \mathbb{E}_{1} is of rank 1 . Then, though it may happen that the Mordell-Weil group of \mathbb{E}_{2} is also of rank 1, there is not a set of formal power series of level N connecting both elliptic curves.

In fancy language, we can say that the existence of (non-torsion) rational points on elliptic curves is partially governed by the singular locus of special fibers in $\operatorname{Spec}(\mathbb{Z})$.
Remark 4.5. Let $\left\{E_{i}\right\}_{i=1,2}$ be two elliptic curves over \mathbb{Q} of conductor N whose Mordell-Weil groups are of rank 1. Take rational newforms $\left\{f_{i}\right\}_{i=1,2} \in S_{2}(N)$ such that we have $L\left(f_{i}, s\right)=L\left(E_{i}, s\right)$. Assume that the strong Birch and SwinnertonDyer conjecture holds ([C]). From the equality $L^{\prime}\left(f_{i}, 1\right) L_{\epsilon_{K_{i}}}\left(f_{i}, 1\right)=L^{\prime}\left(f_{i}, \mathbf{1}, 1\right)$, we obtain $L^{\prime}\left(f_{i}, \mathbf{1}, 1\right)>0$ and thus $\left(G_{K_{i}}, f_{i}\right)_{N, R}>0$. Here, we choose imaginary quadratic fields K_{i} / \mathbb{Q} such that we have $L_{\epsilon_{K_{i}}}\left(f_{i}, 1\right) \neq 0$. Define a set of formal power series by

$$
F_{t}(z)=t f_{1}(z)+(1-t) f_{2}(z) \quad(0 \leq t \leq 1)
$$

If we can take $K_{1}=K_{2}$ (e.g. two elliptic curves of conductor 91 and $\mathbb{Q}(\sqrt{-3})$ [C, p. 118 and 223-224]), we obtain $\left(G_{K_{i}}, F_{t}(z)\right)_{N, R}>0$ for all $0 \leq t \leq 1$. Thus, though this set of formal power series $\left\{F_{t}(z)\right\}_{0 \leq t \leq 1}$ (regrettably) does not satisfy the compatible conditions in Definition 3.1, two elliptic curves $\left\{E_{i}\right\}_{i=1,2}$ are connected by this set of formal power series of level N anyway.

References

[AL] Atkin, A. O. L.; Lehner, J.:Hecke operators on $\Gamma_{0}(m)$. Math. Ann. 185. 1970. 134-160.
[BCDT] Breuil, C.; Conrad, B.; Diamond, F.; Taylor, R.:On the modularity of elliptic curves over \mathbb{Q} : wild 3-adic exercises. J. Amer. Math. Soc. 14 (2001), no. 4, 843-939
[C] Cremona, J.E.: Algorithms for modular elliptic curves. Second edition. Cambridge University Press, Cambridge, 1997.
[CW] Coates, J.; Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math. 39 (1977), no. 3, 223-251.
[DS] Diamond, F.; Shurman, J.:A first course in modular forms. GTM, 228. Springer-Verlag, New York, 2005.
[GZ] Gross, B.H.; Zagier, D.B.:Heegner points and derivatives of L-series. Invent. Math. 84 (1986), no. 2, 225-320.
[Kn] Knapp, A.W.:Elliptic curves. Mathematical Notes, 40. Princeton University Press, Princeton, NJ, 1992. xvi+427 pp.
[Ko] Kolyvagin, V.A.:Finiteness of $E(\mathbb{Q})$ and $Ш(E, \mathbb{Q})$ for a subclass of Weil curves. Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522-540, 670-671.
[TW] Taylor, R.; Wiles, A.: Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 (1995), no. 3, 553-572.
[Wa] Waldspurger, J.L.:Correspondances de Shimura et quaternions. Forum Math. 3 (1991), no. 3, 219-307.
[Wi] Wiles, A.:Modular elliptic curves and Fermat's last theorem. Ann. of Math. (2) 141 (1995), no. 3, 443-551.

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
E-mail address: morita@math.sci.hokudai.ac.jp

