ON THE TOPOLOGICAL ASPECTS OF ARITHMETIC ELLIPTIC CURVES

KAZUMA MORITA

Abstract. In this short note, we shall construct a certain topological family which contains all elliptic curves over \mathbb{Q} and, as an application, show that this family provides some geometric interpretations of the Hasse-Weil L-function of an elliptic curve over \mathbb{Q} whose Mordell-Weil group is of rank ≤ 1 .

1. Introduction

For any elliptic curve E over \mathbb{Q} , there exists a rational newform f such that we have L(E,s)=L(f,s) and, in particular, the Fourier expansion of f tells us the eigenvalues of the Frobenius operator acting on the Tate module of the strong Weil curve modulo p. In this paper, we shall deform the Fourier expansion of f with respect to the arguments $\{\theta_p\}_p$ of these eigenvalues and construct a topological family attached to these deformed differential forms. This family contains all elliptic curves over \mathbb{Q} up to isogeny and we expect that we can deduce the arithmetic facts by using the topological methods. Actually, as an application, if E is an elliptic curve over \mathbb{Q} whose Mordell-Weil group is of rank ≤ 1 , we will show that this family provides some geometric interpretations of the Hasse-Weil L-function of E.

2. Review of the classical theory

Let \mathbb{H} be the upper half-plane and $\mathbb{H}^* = \mathbb{H} \cup \mathbb{Q} \cup \{\infty\}$ be the extended upper half-plane which is obtained by adding the cusps $\mathbb{Q} \cup \{\infty\}$. The modular group $\Gamma = \mathrm{PSL}_2(\mathbb{Z})$ acts discontinuously on \mathbb{H} via linear fractional transformations. Let $\Gamma_0(N)$ denote the congruence subgroup

$$\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \mid c \equiv 0 \pmod{N} \right\}$$

of Γ . The space of cusp forms of weight 2 for $\Gamma_0(N)$ will be denoted by $S_2(N)$. Then, every cusp form $f(z) \in S_2(N)$ ($z \in \mathbb{H}$) has the Fourier expansion

$$f(z) = \sum_{n=1}^{\infty} a_n(f)q^n \qquad (a_n(f) \in \mathbb{C}, \ q = e^{2\pi i z}).$$

Date: April 14, 2016.

1991 Mathematics Subject Classification. 11F03, 11G05, 11G40.

Key words and phrases. modular forms, elliptic curves, L-functions,

We say that f(z) is a normalized cusp form if we have $a_1(f) = 1$. On the other hand, the space of cusp forms $S_2(N)$ is equipped with the Hecke operators:

•
$$T_p: f(z) \mapsto pf(pz) + \frac{1}{p} \sum_{r=0}^{p-1} f(\frac{z+r}{p})$$
 $(p \nmid N \ (p: \text{ prime}))$
• $U_p: f(z) \mapsto \frac{1}{p} \sum_{r=0}^{p-1} f(\frac{z+r}{p})$ $(p \mid N \ (p: \text{ prime})).$

•
$$U_p: f(z) \mapsto \frac{1}{n} \sum_{r=0}^{p-1} f(\frac{z+r}{n})$$
 $(p \mid N \ (p: \text{ prime})).$

Now, we are concerned with a rational newform f: a normalized cusp form of weight 2 which has the rational Fourier expansion, is a simultaneous eigenform for all the Hecke operators and is a newform in the sense of [AL]. Let δ_N denote the character defined by $\delta_N(p) = 1$ if $p \nmid N$ and = 0 if $p \mid N$.

Proposition 2.1. Let $f(z) = \sum_{n=1}^{\infty} a_n(f)q^n$ be a rational newform. Then, the Fourier expansion of f(z) satisfies the following conditions.

(1)
$$a_{p^{r+1}}(f) = a_p(f)a_{p^r}(f) - \delta_N(p)pa_{p^{r-1}}(f)$$
 $(r \ge 1)$
(2) $a_{mn}(f) = a_m(f)a_n(f)$ $((m, n) = 1).$

Given a rational newform f, we consider an associated period lattice

$$\Lambda_f = \left\{ \int_{\alpha}^{\beta} f(z)dz \mid \alpha, \ \beta \in \mathbb{H}^*, \ \alpha \equiv \beta \ (\text{mod } \Gamma_0(N)) \right\}$$

which is a discrete subgroup of \mathbb{C} of rank 2. Then, it is known that the quotient $E_f = \mathbb{C}/\Lambda_f$ is an elliptic curve over \mathbb{Q} of conductor N and that we have $L(E_f, s) =$ L(f,s) where the LHS denotes the Hasse-Weil L-function of E_f and the RHS denotes the Dirichlet L-series of f. Conversely, for any elliptic curve E over \mathbb{Q} , there exists a rational newform f such that we have L(E,s) = L(f,s) ([Wi], [TW], [BCDT]). From this equality, we have the following result.

Proposition 2.2. For any prime $p \nmid N$, we have $a_p(f) = 1 + p - \#E_f(\mathbb{F}_p)$ and there exists $0 \le \theta_p \le \pi$ such that $a_p(f) = 2p^{\frac{1}{2}}\cos(\theta_p)$.

3. Deformation of the Fourier expansion

In this section, we shall deform the Fourier expansion of a rational newform with respect to the arguments $\{\theta_p\}_p$ (Proposition 2.2).

Definition 3.1. Let $F(z) = \sum_{n=1}^{\infty} a_n(F)q^n$ be a formal power series in $\mathbb{C}[[q]]$ which satisfies the following conditions.

- (1) If there exists a rational newform f(z) such that we have $a_p(f) = a_p(F)$ for almost all primes p, put F(z) = f(z). The coefficients of F(z) are determined by Proposition 2.1 and 2.2.
- (2) If there does not exist such a rational newform, assume that F(z) is normalized (i.e. $a_1(F) = 1$) and that, for each prime p, there exists $0 \le \theta_p^F \le \pi$ such that we have

$$a_p(F) = 2p^{\frac{1}{2}}\cos(\theta_p^F).$$

Furthermore, the following compatible conditions are satisfied.

(a)
$$a_{p^{r+1}}(F) = a_p(F)a_{p^r}(F) - pa_{p^{r-1}}(F)$$
 $(r \ge 1)$

(a)
$$a_{p^{r+1}}(F) = a_p(F)a_{p^r}(F) - pa_{p^{r-1}}(F)$$
 $(r \ge 1)$
(b) $a_{mn}(F) = a_m(F)a_n(F)$ $((m, n) = 1)$.

Fix a power series $F(z) \in \mathbb{C}[[q]]$ as above. Let $\{\gamma_i\}_{i=1,2}$ denote any smooth path from α_i to β_i in \mathbb{H}^* . Consider an associated period lattice

$$\Lambda_F(\gamma_1, \gamma_2) = \left\{ \int_{\alpha_i}^{\beta_i} F(z) dz \mid \alpha_i \stackrel{\gamma_i}{\sim} \beta_i \right\}_{i=1,2}.$$

Note that, contrary to Λ_f , this $\Lambda_F(\gamma_1, \gamma_2)$ does not form a discrete subgroup of \mathbb{C} depending on the choice of $\{\gamma_i\}_{i=1,2}$. Thus, the quotient $E_F(\gamma_1,\gamma_2)=$ $\mathbb{C}/\Lambda_F(\gamma_1,\gamma_2)$ is not an elliptic curve in general.

Definition 3.2. With notation as above, let Θ denote the topological family $\{E_F(\gamma_1, \gamma_2)\}\$ where F (resp. $\{\gamma_i\}_{i=1,2}$) runs through any power series as in Definition 3.1 (resp. any smooth path in \mathbb{H}^*).

Remark 3.3. We can say that this topological family Θ is the smallest in the sense that it contains all elliptic curves over \mathbb{Q} up to isogeny and the associated rational newforms are all parametrized by the arguments $\{\theta_p\}_p$.

4. Applications

4.1. The case of rank 0. For any elliptic curve E over \mathbb{Q} , the Birch and Swinnerton-Dyer conjecture predicts that the rank of Mordell-Weil group $E(\mathbb{Q})$ is equal to the order of the zero of L(E,s) at s=1. In the case that we have $L(E,1) \neq 0$, it is known that the Mordell-Weil group of E is of rank 0 ([CW]). Now, assume that E is such an elliptic curve and that f is an associated rational newform satisfying L(E,s) = L(f,s). Since the Dirichlet L-series L(f,s) can be written via Mellin transform

$$L(f,s) = (2\pi)^s \Gamma(s)^{-1} \int_0^{i\infty} (-iz)^s f(z) \frac{dz}{z}$$

where $\Gamma(s)$ denotes the gamma function of s, the period integral $\int_0^{i\infty} f(z)dz$ does not vanish. Let I denote any smooth path from 0 to $i\infty$ in \mathbb{H}^* .

Example 4.1. Let $\{E_i\}_{i=1,2}$ be two elliptic curves over \mathbb{Q} . Assume that there exist a set of formal power series $\{F(z)\}_F$ as in Definition 3.1 and a set of smooth paths $\{J\}_J$ in \mathbb{H}^* such that $\{E_F(I,J)\}_{F,J}$ forms a topological family of (nondegenerate) elliptic curves connecting E_1 and E_2 . Then, Mordell-Weil groups of $\{E_i\}_{i=1,2}$ are of rank 0.

4.2. The case of rank 1. First, we shall recall the results of [GZ]. Let K be an imaginary quadratic field whose discriminant D is relatively prime to the level Nof the rational newform f and let H denote the Hilbert class field of K. Fix an element σ in Gal(H/K). Note that this Galois group is isomorphic to the class group Cl_K of K. Let \mathcal{A}_K be the class corresponding to σ and let $\theta_{\mathcal{A}_K}(z)$ denote the theta series

$$\theta_{\mathcal{A}_K}(z) = \sum_{n \ge 0} r_{\mathcal{A}_K}(n) q^n \quad (q = e^{2\pi i z})$$

where $r_{\mathcal{A}_K}(0) = \frac{1}{\sharp(\mathbb{O}_K^*)}$ (\mathcal{O}_K : the ring of integers in K) and $r_{\mathcal{A}_K}(n)$ ($n \geq 1$) is the number of integral ideals α in the class of \mathcal{A}_K with norm n. Define the L-function associated to the rational newform $f = \sum_n a_n q^n \in S_2(N)$ and the ideal class \mathcal{A}_K by

$$L_{\mathcal{A}_K}(f,s) = \left(\sum_{n>1,(n,DN)=1} \epsilon_K(n)n^{1-2s}\right) \cdot \left(\sum_{n\geq 1} a_n r_{\mathcal{A}_K}(n)n^{-s}\right)$$

where $\epsilon_K : (\mathbb{Z}/D\mathbb{Z})^* \to \{\pm 1\}$ denotes the character associated to K/\mathbb{Q} . Furthermore, for a complex character χ of the ideal class group of K, denote the total L-function by

$$L(f,\chi,s) = \sum_{\mathcal{A}_K} \chi(\mathcal{A}_K) L_{\mathcal{A}_K}(f,s).$$

Then, it is known that both of $L_{A_K}(f,s)$ and $L(f,\chi,s)$ have analytic continuations to the entire plane and satisfy functional equations $(s \leftrightarrow 2-s)$. Furthermore, if we put $L_{\epsilon_K}(f,s) = \sum_n \epsilon_K(n) a_n n^{-s}$ for $f = \sum_n a_n q^n$, we have $L(f,s)L_{\epsilon_K}(f,s) = L(f,\mathbf{1},s)$. Note that $L_{\epsilon_K}(f,s)$ is the Hasse-Weil L-function of E' over \mathbb{Q} where E' denotes the twist of E over E' ([GZ, p.309, 312]). The following thing is one of the main results of Gross-Zagier.

Proposition 4.2. ([GZ, p.230]) There exists a cusp form g_{A_K} of weight 2 on $\Gamma_0(N)$ such that we have

$$L'_{\mathcal{A}_K}(f,1) = 32\pi^2 \sharp (\mathcal{O}_K^*)^{-2} |D|^{-\frac{1}{2}} \cdot (g_{\mathcal{A}_K}, f)_N$$

where $(\ ,\)_N$ denotes the Petersson inner product on cusp forms of weight 2 for $\Gamma_0(N)$. Thus, this formula leads to

$$L'(f,\chi,1) = \sum_{\mathcal{A}_K} \chi(\mathcal{A}_K) L'_{\mathcal{A}_K}(f,1) = 32\pi^2 \sharp (\mathcal{O}_K^*)^{-2} |D|^{-\frac{1}{2}} \cdot (\sum_{\mathcal{A}_K} \chi(\mathcal{A}_K) g_{\mathcal{A}_K}, f)_N$$

Now, let E be an elliptic curve over \mathbb{Q} such that L(E,s) = L(f,s) for some rational newform $f \in S_2(N)$. Assume that we have $\operatorname{ord}_{s=1}L(E,s) = 1$. In this case, it is known that the Mordell-Weil group of E is of rank 1 ([Ko]). Furthermore, since the sign of the functional equation of L(E,s) = L(f,s) is -1, we can choose an imaginary quadratic extension K/\mathbb{Q} such that $L_{\epsilon_K}(f,1) \neq 0$ ([Wa]). In particular, it follows that we obtain $L'(f,1,1) \neq 0$ and thus $(\sum_{A_K} \mathbf{1}(A_K)g_{A_K}, f)_N \neq 0$. Let $\{g_i\}_{i=1}^d$ (resp. $\{h_j\}_{j=1}^e$) denote a basis of the space of newforms (resp. oldforms) in $S_2(N)$ over \mathbb{C} . If we write $\sum_{A_K} \mathbf{1}(A_K)g_{A_K} = \sum_{i=1}^d a_ig_i + \sum_{j=1}^e b_jh_j$ $(a_i,b_j\in\mathbb{C})$, put $G_K=\sum_{i=1}^d a_ig_i\in S_2(N)$.

Definition 4.3. Let $F(z) \in \mathbb{C}[[q]]$ $(q = e^{2\pi iz})$ be a formal power series as in Definition 3.1. Fix a fundamental domain R in \mathbb{H} for $\Gamma_0(N)$. We say that F(z) is of level N with respect to R if we have

$$(G_K, F(z))_{N,R} := \int_R G_K \cdot \overline{F(z)} dx dy \neq 0 \quad (z = x + iy)$$

for some imaginary quadratic extension K/\mathbb{Q} whose discriminant is relatively prime to N.

Example 4.4. Let us consider the following two cases.

- (1) Let $\{F(z)\}_F$ be a set of formal power series of level N with respect to R such that we have $L(F,1) := -2\pi i \Gamma(1)^{-1} \int_0^{i\infty} F(z) dz = 0$ and let $\{I,J\}_{I,J}$ denote a set of smooth paths in \mathbb{H}^* . Assume that two elliptic curves $\{E_i\}_{i=1,2}$ over \mathbb{Q} of conductor N are connected by the topological family $\{E_F(I,J)\}_{F,I,J}$. Then, Mordell-Weil groups of $\{E_i\}_{i=1,2}$ are of rank 1.
- (2) On the other hand, let \mathbb{E}_1 (resp. \mathbb{E}_2) be an elliptic curve over \mathbb{Q} of conductor N (resp. N'). Here, N' denotes a positive integer such that $N' \mid N$ and N' < N. Assume that the Mordell-Weil group of \mathbb{E}_1 is of rank 1. Then, though it may happen that the Mordell-Weil group of \mathbb{E}_2 is also of rank 1, there is not a set of formal power series of level N connecting both elliptic curves.

In fancy language, we can say that the existence of (non-torsion) rational points on elliptic curves is partially governed by the *singular locus* of special fibers in Spec (\mathbb{Z}).

Remark 4.5. Let $\{E_i\}_{i=1,2}$ be two elliptic curves over \mathbb{Q} of conductor N whose Mordell-Weil groups are of rank 1. Take rational newforms $\{f_i\}_{i=1,2} \in S_2(N)$ such that we have $L(f_i, s) = L(E_i, s)$. Assume that the strong Birch and Swinnerton-Dyer conjecture holds ([C]). From the equality $L'(f_i, 1)L_{\epsilon_{K_i}}(f_i, 1) = L'(f_i, 1, 1)$, we obtain $L'(f_i, 1, 1) > 0$ and thus $(G_{K_i}, f_i)_{N,R} > 0$. Here, we choose imaginary quadratic fields K_i/\mathbb{Q} such that we have $L_{\epsilon_{K_i}}(f_i, 1) \neq 0$. Define a set of formal power series by

$$F_t(z) = t f_1(z) + (1-t) f_2(z) \quad (0 \le t \le 1).$$

If we can take $K_1 = K_2$ (e.g. two elliptic curves of conductor 91 and $\mathbb{Q}(\sqrt{-3})$ [C, p.118 and 223-224]), we obtain $(G_{K_i}, F_t(z))_{N,R} > 0$ for all $0 \le t \le 1$. Thus, though this set of formal power series $\{F_t(z)\}_{0 \le t \le 1}$ (regrettably) does not satisfy the compatible conditions in Definition 3.1, two elliptic curves $\{E_i\}_{i=1,2}$ are connected by this set of formal power series of level N anyway.

References

[AL] Atkin, A. O. L.; Lehner, J.: Hecke operators on $\Gamma_0(m)$. Math. Ann. 185. 1970. 134–160. [BCDT] Breuil, C.; Conrad, B.; Diamond, F.; Taylor, R.: On the modularity of elliptic curves over \mathbb{Q} : wild 3-adic exercises. J. Amer. Math. Soc. 14 (2001), no. 4, 843–939

- [C] Cremona, J.E.: Algorithms for modular elliptic curves. Second edition. Cambridge University Press, Cambridge, 1997.
- [CW] Coates, J.; Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math. 39 (1977), no. 3, 223–251.
- [DS] Diamond, F.; Shurman, J.: A first course in modular forms. GTM, 228. Springer-Verlag, New York, 2005.
- [GZ] Gross, B.H.; Zagier, D.B.: Heegner points and derivatives of L-series. Invent. Math. 84 (1986), no. 2, 225–320.
- [Kn] Knapp, A.W.: *Elliptic curves*. Mathematical Notes, 40. Princeton University Press, Princeton, NJ, 1992. xvi+427 pp.
- [Ko] Kolyvagin, V.A.: Finiteness of $E(\mathbb{Q})$ and (E,\mathbb{Q}) for a subclass of Weil curves. Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522–540, 670–671.
- [TW] Taylor, R.; Wiles, A.: Ring-theoretic properties of certain Hecke algebras. Ann. of Math. (2) 141 (1995), no. 3, 553–572.
- [Wa] Waldspurger, J.L.: Correspondences de Shimura et quaternions. Forum Math. 3 (1991), no. 3, 219–307.
- [Wi] Wiles, A.: Modular elliptic curves and Fermat's last theorem. Ann. of Math. (2) 141 (1995), no. 3, 443–551.

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan

E-mail address: morita@math.sci.hokudai.ac.jp