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Résumé. Soit K un corps local p-adique de corps résiduel k tel que [k :
kp] = pe < +∞ et soit V une représentation p-adique de Gal(K/K). Nous
utilisons la théorie des modules différentiels p-adiques pour montrer que V est
une représentation de Hodge-Tate (resp. de Rham) de Gal(K/K) si et seulement

si V est une représentation de Hodge-Tate (resp. de Rham) de Gal(Kpf/Kpf) où
Kpf/K est un certain corps local p-adique de corps résiduel le plus petit corps
parfait kpf contenant k.

Abstract. Let K be a p-adic local field with residue field k such that [k :
kp] = pe < +∞ and V be a p-adic representation of Gal(K/K). Then, by using
the theory of p-adic differential modules, we show that V is a Hodge-Tate (resp.
de Rham) representation of Gal(K/K) if and only if V is a Hodge-Tate (resp.

de Rham) representation of Gal(Kpf/Kpf) where Kpf/K is a certain p-adic local
field with residue field the smallest perfect field kpf containing k.

1. Introduction

Let K be a complete discrete valuation field of characteristic 0 with residue
field k of characteristic p > 0 such that [k : kp] = pe < +∞. Choose an algebraic
closure K of K and put GK = Gal(K/K). By a p-adic representation of GK ,
we mean a finite dimensional vector space V over Qp endowed with a continuous
action of GK . In the case e = 0 (i.e. k is perfect), following Fontaine, we can
classify p-adic representations of GK by using the p-adic periods rings BHT, BdR,
Bst and Bcris (Hodge-Tate, de Rham, semi-stable and crystalline representations).
In the general case (i.e. k is not necessarily perfect), Hyodo constructed the
imperfect residue field version of the ring BHT and Tsuzuki and several authors
constructed that of the ring BdR. By using these rings, we can define the imperfect
residue field version of Hodge-Tate and de Rham representations of GK in the
evident way ([Br2],[H],[K1],[K2],[Tz]).

Now, we shall state the main result of this article. Let us fix some notations.
Fix a lifting (bi)1≤i≤e of a p-basis of k in OK (the ring of integers of K) and for
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each m ≥ 1, fix a pm -th root b
1/pm

i of bi in K satisfying (b
1/pm+1
i )p = b

1/pm

i . Put

K(pf) = ∪m≥1K(b
1/pm

i , 1 ≤ i ≤ e) and Kpf=the p-adic completion of K(pf). These
fields depend on the choice of a lifting of a p-basis of k in OK . SinceK

pf becomes a
complete discrete valuation field with perfect residue field, we can apply theories
in the perfect residue field case to p-adic representations of GKpf = Gal(Kpf/Kpf)

where we choose an algebraic closure Kpf of Kpf containing K. Note that, if V is
a p-adic representation of GK , it can be also regarded as a p-adic representation
of GKpf (see Section 2.2 for details). Our main result is the following.

Theorem 1.1. Let K be a complete discrete valuation field of characteristic 0
with residue field k of characteristic p > 0 such that [k : kp] = pe < +∞ and V
be a p-adic representation of GK. Let Kpf be the field extension of K defined as
above. Then, we have the following equivalences

(1) V is a Hodge-Tate representation of GK if and only if V is a Hodge-Tate
representation of GKpf,

(2) V is a de Rham representation of GK if and only if V is a de Rham
representation of GKpf.

In the case of Hodge-Tate representations, Tsuji [Tj] had proved a more refined
theorem based on this article. This paper is organized as follows. In Section 2, we
shall review the definitions and basic known facts on Hodge-Tate and de Rham
representations, first in the perfect residue field case and then in the imperfect
residue field case. In Section 3, we shall review the theory of p-adic differential
modules which play an central role in this article. In Section 4, by using the
theory of p-adic differential modules, we shall prove the main theorem, first for
Hodge-Tate representations and then for de Rham representations.
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supported by JSPS Core-to-Core Program “New Developments of Arithmetic Ge-
ometry, Motive, Galois Theory, and Their Practical Applications” and he thanks
Professor Makoto Matsumoto for encouraging this visiting. This research is par-
tially supported by JSPS Research Fellowships for Young Scientists.

2. Preliminaries on Hodge-Tate and de Rham representations

2.1. Hodge-Tate and de Rham representations in the perfect residue
field case. (See [F1] and [F2] for details.) LetK be a complete discrete valuation
field of characteristic 0 with perfect residue field k of characteristic p > 0. Choose
an algebraic closure K of K and consider its p-adic completion Cp. Put

Ẽ = lim←−x 7→xpCp = {(x(0), x(1), . . .)|(x(i+1))p = x(i), x(i) ∈ Cp}
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and let Ẽ+ denote the set of x = (x(i)) ∈ Ẽ such that x(0) ∈ OCp where OCp

denotes the ring of integers of Cp. For two elements x = (x(i)) and y = (y(i)) of

Ẽ, their sum and product are defined by (x+y)(i) = limj→+∞(x(i+j)+y(i+j))p
j
and

(xy)(i) = x(i)y(i). These sum and product make Ẽ a perfect field of characteristic

p > 0 (Ẽ+ is a subring of Ẽ). Let ϵ = (ϵ(n)) be an element of Ẽ such that

ϵ(0) = 1 and ϵ(1) ̸= 1. Then, Ẽ is the completion of an algebraic closure of
k((ϵ − 1)) for the valuation defined by vE(x) = vp(x

(0)) where vp denotes the

p-adic valuation of Cp normalized by vp(p) = 1. The field Ẽ is equipped with
a continuous action of the Galois group GK = Gal(K/K) with respect to the

topology defined by the valuation vE. Put Ã+ = W (Ẽ+) (the ring of Witt vectors

with coefficients in Ẽ+) and B̃+ = Ã+[1/p] = {
∑

k>>−∞ pk[xk]|xk ∈ Ẽ+} where

[∗] denotes the Teichmüller lift of ∗ ∈ Ẽ+. This ring B̃+ is equipped with a
surjective homomorphism

θ : B̃+ ↠ Cp :
∑

pk[xk] 7→
∑

pkx
(0)
k .

If p̃ = (p(n)) denotes an element of Ẽ+ such that p(0) = p, we can show that
Ker (θ) is the principal ideal generated by ω = [p̃]− p. The ring B+

dR,K is defined

to be the Ker (θ)-adic completion of B̃+

B+
dR,K = lim←−n≥0B̃+/(Ker (θ)n).

This is a discrete valuation ring and t = log([ϵ]) which converges in B+
dR,K is a gen-

erator of the maximal ideal. Put BdR,K = B+
dR,K [1/t]. This ring BdR,K becomes

a field and is equipped with an action of the Galois group GK and a filtration de-
fined by FiliBdR,K = tiB+

dR,K (i ∈ Z). Then, (BdR,K)
GK is canonically isomorphic

to K. Thus, for a p-adic representation V of GK , DdR,K(V ) = (BdR,K ⊗Qp V )GK

is naturally a K-vector space. We say that a p-adic representation V of GK is a
de Rham representation of GK if we have

dimQpV = dimKDdR,K(V ) (we always have dimQpV ≥ dimKDdR,K(V )).

Furthermore, we say that a p-adic representation V of GK is a potentially de
Rham representation of GK if there exists a finite field extension L/K in K such
that V is a de Rham representation of GL. It is known that a potentially de
Rham representation V of GK is a de Rham representation of GK (see [F2], 3.9).

Define BHT,K to be the associated graded algebra to the filtration FiliBdR,K .
The quotient griBHT,K = FiliBdR,K/Fil

i+1BdR,K (i ∈ Z) is a one-dimensional
Cp-vector space spanned by the image of ti. Thus, we obtain the presentation

BHT,K =
⊕
i∈Z

Cp(i)

where Cp(i) = Cp ⊗ Zp(i) is the Tate twist. Then, (BHT,K)
GK is canonically

isomorphic to K. Thus, for a p-adic representation V of GK , DHT,K(V ) =
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(BHT,K ⊗Qp V )GK is naturally a K-vector space. We say that a p-adic repre-
sentation V of GK is a Hodge-Tate representation of GK if we have

dimQpV = dimKDHT,K(V ) (we always have dimQpV ≥ dimKDHT,K(V )).

Furthermore, we say that a p-adic representation V of GK is a potentially Hodge-
Tate representation of GK if there exists a finite field extension L/K in K such
that V is a Hodge-Tate representation of GL. It is known that a potentially
Hodge-Tate representation V of GK is a Hodge-Tate representation of GK (see
[F2], 3.9). Since we have grBdR,K ≃

⊕
i∈ZCp(i), if V is a de Rham representation

of GK , there exists a GK-equivariant isomorphism Cp⊗Qp V ≃
⊕d=dimQpV

j=1 Cp(nj)
(nj ∈ Z). Thus, it follows that a de Rham representation V ofGK is a Hodge-Tate
representation of GK .

2.2. Hodge-Tate and de Rham representations in the imperfect residue
field case. Let K be a complete discrete valuation field of characteristic 0 with
residue field k of characteristic p > 0 such that [k : kp] = pe < +∞. Choose an
algebraic closure K of K and put GK = Gal(K/K). As in Introduction, fix a
lifting (bi)1≤i≤e of a p-basis of k in OK (the ring of integers of K) and for each

m ≥ 1, fix a pm -th root b
1/pm

i of bi in K satisfying (b
1/pm+1

i )p = b
1/pm

i . Put

K(pf) = ∪m≥0K(b
1/pm

i , 1 ≤ i ≤ e) and Kpf = the p-adic completion of K(pf).

These fields depend on the choice of a lifting of a p-basis of k in OK . Since
K(pf) is a Henselian discrete valuation field, we have an isomorphism GKpf =
Gal(Kpf/Kpf) ≃ GK(pf) = Gal(K/K(pf)) (⊂ GK) where we choose an algebraic

closure Kpf of Kpf containing K. With this isomorphism, we identify GKpf with
a subgroup of GK . We have a bijective map from the set of finite extensions
of K(pf) contained in K to the set of finite extensions of Kpf contained in Kpf

defined by L→ LKpf. Furthermore, LKpf is the p-adic completion of L. Hence,
we have an isomorphism of rings

OK/p
nOK ≃ O

Kpf/p
nO

Kpf

where OK and O
Kpf denote the rings of integers of K and Kpf. Thus, the p-adic

completion ofK is isomorphic to the p-adic completion ofKpf, which we will write

Cp. As in Subsection 2.1, construct the rings Ẽ+ and Ã+ = W (Ẽ+) from this
Cp. Let k

pf denote the perfect residue field of Kpf and put OK0 = OK ∩W (kpf).

Let α : OK ⊗OK0
Ã+ ↠ OK/pOK be the natural surjection and define Ã+

(K) to

be Ã+
(K) = lim←−n≥0(OK ⊗OK0

Ã+)/(Ker (α))n. Let θK : Ã+
(K) ⊗Zp Qp ↠ Cp be the

natural extension of θ : Ã+[1/p] ↠ Cp. Define B+
dR,K to be the Ker (θK)-adic

completion of Ã+
(K) ⊗Zp Qp

B+
dR,K = lim←−n≥0(Ã+

(K) ⊗Zp Qp)/(Ker (θK)
n).

This is a K-algebra equipped with an action of the Galois group GK . Let b̃i
denote (b

(n)
i ) ∈ Ẽ+ such that b

(0)
i = bi and then the series which defines log([b̃i]/bi)
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converges to an element ti in B+
dR,K . Then, the ring B+

dR,K becomes a local ring

with the maximal ideal mdR = (t, t1, . . . , te). Define a filtration on B+
dR,K by

filiB+
dR,K = mi

dR. Then, the homomorphism

f : B+
dR,Kpf [[t1, . . . , te]]→ B+

dR,K

is an isomorphism of filtered algebras (see [Br2], Proposition 2.9). From this
isomorphism, it follows easily that

i : B+
dR,Kpf ↪→ B+

dR,K and p : B+
dR,K ↠ B+

dR,Kpf : ti 7→ 0

are GKpf-equivariant homomorphisms and the composition

p ◦ i : B+
dR,Kpf ↪→ B+

dR,K ↠ B+
dR,Kpf

is an identity. Put BdR,K = B+
dR,K [1/t]. Then, K is canonically embedded in

BdR,K and we have a canonical isomorphism (BdR,K)
GK = K. Thus, for a p-adic

representation V of GK , DdR,K(V ) = (BdR,K ⊗Qp V )GK is naturally a K-vector
space. We say that a p-adic representation V of GK is a de Rham representation
of GK if we have

dimQpV = dimKDdR,K(V ) (we always have dimQpV ≥ dimKDdR,K(V )).

Furthermore, we say that a p-adic representation V of GK is a potentially de
Rham representation of GK if there exists a finite field extension L/K in K such
that V is a de Rham representation of GL. We can show that a potentially de
Rham representation V of GK is a de Rham representation of GK in the same
way as in the perfect residue field case.

Define a filtration on BdR,K to be

Fil0BdR,K =
∞∑
n=0

t−nfilnB+
dR,K = B+

dR,K [
t1
t
, . . . ,

te
t
],

FiliBdR,K = tiFil0BdR,K (i ∈ Z).

Define BHT,K to be the associated graded algebra to this filtration. Since the
quotient griBHT,K = FiliBdR,K/Fil

i+1BdR,K (i ∈ Z) is given by griBHT,K =
tiCp[

t1
t
, . . . , te

t
], we obtain the presentation

BHT,K = Cp[t, t
−1,

t1
t
, . . . ,

te
t
] = BHT,Kpf [

t1
t
, . . . ,

te
t
].

From this presentation, it follows easily that

i : BHT,Kpf ↪→ BHT,K and p : BHT,K ↠ BHT,Kpf : ti/t 7→ 0

are GKpf-equivariant homomorphisms and the composition

p ◦ i : BHT,Kpf ↪→ BHT,K ↠ BHT,Kpf

is an identity. The field K is canonically embedded in BHT,K and we have
(BHT,K)

GK = K. Thus, for a p-adic representation V of GK , DHT,K(V ) =
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(BHT,K ⊗Qp V )GK is naturally a K-vector space. We say that a p-adic repre-
sentation V of GK is a Hodge-Tate representation of GK if we have

dimQpV = dimKDHT,K(V ) (we always have dimQpV ≥ dimKDHT,K(V )).

Furthermore, we say that a p-adic representation V of GK is a potentially Hodge-
Tate representation of GK if there exists a finite field extension L/K in K such
that V is a Hodge-Tate representation of GL. We can show that a potentially
Hodge-Tate representation V of GK is a Hodge-Tate representation of GK in the
same way as in the perfect residue field case.

3. Preliminaries on p-adic differential modules

In this section, we shall review the theory of p-adic differential modules which
plays an important role in this article. First, let us fix the notations. Let K
be a complete discrete valuation field of characteristic 0 with residue field k of
characteristic p > 0 such that [k : kp] = pe <∞ and V be a p-adic representation

of GK . Define K(pf) and Kpf as in Introduction and Subsection 2.2. Put K
(pf)
∞ =

∪m≥0K
(pf)(ζpm) (resp. Kpf

∞ = ∪m≥0K
pf(ζpm)) where ζpm denotes a primitive pm-

th root of unity in K (resp. Kpf) such that (ζpm+1)p = ζpm . Let K̂pf
∞ denote the

p-adic completion of Kpf
∞. These fields K

(pf)
∞ , Kpf

∞ and K̂pf
∞ depend on the choice

of a lifting of a p-basis of k in OK . Then, we have the following inclusions

K(pf)
∞ ⊂ Kpf

∞ ⊂ K̂pf
∞.

Let H denote the kernel of the cyclotomic character χ : GKpf → Z∗
p. Then,

the Galois group H is isomorphic to the subgroup Gal(K/K
(pf)
∞ ) of GK . Define

ΓK = GK/H. Let Γ0 denote the subgroup Gal(K
(pf)
∞ /K(pf)) (≃ GKpf/H) of ΓK .

Let Γi (1 ≤ i ≤ e) be the subgroup of ΓK such that actions of βi ∈ Γi (1 ≤ i ≤ e)

satisfy βi(ζpm) = ζpm and βi(b
1/pm

j ) = b
1/pm

j (i ̸= j) and define the homomorphism

ci : Γi → Zp such that we have βi(b
1/pm

i ) = b
1/pm

i ζ
ci(βi)
pm . Then, the homomorphism

ci defines an isomorphism Γi ≃ Zp of profinite groups. With this, we can see that
there exist isomorphisms of profinite groups

ΓK ≃ Γ0 ⋉ (⊕e
i=1Γi) ≃ Γ0 ⋉ Z⊕e

p .

3.1. Definitions of p-adic differential modules. We shall review the defini-
tions of p-adic differential modules and have the following diagram, for a p-adic
representation V of GK ,

(B+
dR,K⊗QpV )H

θK↠ (Cp ⊗Qp V )H

∪ ∪
D+

dif(V ) ↠ DSen(V )

∪ ∪
D+

e-dif(V ) ↠ DBri(V ).
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3.1.1. The module DSen(V ). In the article [S], Sen shows that, for a p-adic repre-

sentation V of GKpf , the K̂pf
∞-vector space (Cp⊗QpV )H has dimension d = dimQpV

and the union of the finite dimensional Kpf
∞-subspaces of (Cp ⊗Qp V )H stable

under Γ0 (≃ GKpf/H) is a Kpf
∞-vector space of dimension d stable under Γ0

(called DSen(V )). We have Cp ⊗Kpf
∞
DSen(V ) = Cp ⊗Qp V and the natural map

K̂pf
∞ ⊗Kpf

∞
DSen(V ) → (Cp ⊗Qp V )H is an isomorphism. Furthermore, if γ ∈ Γ0 is

close enough to 1, then the series of operators on DSen(V )

log(γ)

log(χ(γ))
= − 1

log(χ(γ))

∑
k≥1

(1− γ)k

k

converges to a Kpf
∞-linear derivation ∇(0) : DSen(V ) → DSen(V ) and does not

depend on the choice of γ.

3.1.2. The module DBri(V ). In the article [Br1], Brinon generalizes Sen’s work
above. For a p-adic representation V of GK , he shows that the union of the finite

dimensional K
(pf)
∞ -subspaces of (Cp ⊗Qp V )H stable under ΓK is a K

(pf)
∞ -vector

space of dimension d stable under ΓK (we call it DBri(V )). We have Cp ⊗K
(pf)
∞

DBri(V ) = Cp ⊗Qp V and the natural map K̂pf
∞ ⊗K

(pf)
∞

DBri(V ) → (Cp ⊗Qp V )H

is an isomorphism. As in the case of DSen(V ), the K
(pf)
∞ -vector space DBri(V ) is

endowed with the action of the K
(pf)
∞ -linear derivation ∇(0) = log(γ)

log(χ(γ))
if γ ∈ Γ0 is

close enough to 1. In addition to this operator ∇(0), if βi ∈ Γi is close enough to
1, then the series of operators on DBri(V )

log(βi)

ci(βi)
= − 1

ci(βi)

∑
k≥1

(1− βi)
k

k

converges to a K
(pf)
∞ -linear derivation ∇(i) : DBri(V ) → DBri(V ) and does not

depend on the choice of βi.

3.1.3. The module D+
e-dif(V ). In the article [A-B], Andreatta and Brinon gener-

alize Fontaine’s work [F3]. For a p-adic representation V of GK , they show that

the union of K
(pf)
∞ [[t, t1, . . . , te]]-submodules of finite type of (B+

dR,K ⊗Qp V )H sta-

ble under ΓK is a free K
(pf)
∞ [[t, t1, . . . , te]]-module of rank d stable under ΓK (we

call it D+
e-dif(V )). We have B+

dR,K ⊗K
(pf)
∞ [[t,t1,...,te]]

D+
e-dif(V ) = B+

dR,K ⊗Qp V and

the natural map (B+
dR,K)

H ⊗
K

(pf)
∞ [[t,t1,...,te]]

D+
e-dif(V ) → (B+

dR,K ⊗Qp V )H is an iso-

morphism. The K
(pf)
∞ [[t, t1, . . . , te]]-module D+

e-dif(V ) is endowed with the action

of the K
(pf)
∞ -linear derivations ∇(0) = log(γ)

log(χ(γ))
if γ ∈ Γ0 is close enough to 1 and

∇(i) = log(βi)
ci(βi)

(1 ≤ i ≤ e) if βi ∈ Γi is close enough to 1.
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3.1.4. The module D+
dif(V ). For a p-adic representation V of GK , define D+

dif(V )

to be lim←−r(K
pf
∞[[t, t1, . . . , te]] ⊗K

(pf)
∞ [[t,t1,...,te]]

D
+,(r)
e-dif (V )) where we put D

+,(r)
e-dif (V ) =

D+
e-dif(V )/(t, t1, . . . , te)

rD+
e-dif(V ). One can verify that D+

dif(V ) is the union of
Kpf

∞[[t, t1, . . . , te]]-submodules of finite type of (B+
dR,K⊗Qp V )H stable under Γ0 (≃

GKpf/H) and is a free Kpf
∞[[t, t1, . . . , te]]-module of rank d stable under Γ0. Fur-

thermore, we have B+
dR,K ⊗Kpf

∞[[t,t1,...,te]]
D+

dif(V ) = B+
dR,K ⊗Qp V and the natural

map (B+
dR,K)

H ⊗Kpf
∞[[t,t1,...,te]]

D+
dif(V )→ (B+

dR,K ⊗Qp V )H is an isomorphism. As in

the case of D+
e-dif(V ), the Kpf

∞[[t, t1, . . . , te]]-module D+
dif(V ) is endowed with the

action of the Kpf
∞-linear derivation ∇(0) = log(γ)

log(χ(γ))
if γ ∈ Γ0 is close enough to 1.

Remark 3.1. (1) The preceding results in Subsection 3.1.1 are obtained when
V is a p-adic representation of GL = Gal(L/L) where L is a complete dis-
crete valuation field of characteristic 0 with perfect residue field of char-
acteristic p > 0 and we choose an algebraic closure L of L. However, in
Subsection 3.1.1, for simplicity, we stated the results in the case L = Kpf.

(2) Note that, though many people denote the p-adic differential module con-
structed by Fontaine in [F3] by D+

dif(V ), the module D+
dif(V ) in Subsection

3.1.4 is a little different from this module.

3.2. Some properties of differential operators. We shall describe the action
of derivations {∇(i)}ei=0 on DBri(V ) and D+

e-dif(V ). First, by a standard argument,
we can show that, if x ∈ DBri(V ) (resp. D+

e-dif(V )), we have

∇(0)(x) = limγ→1
γ(x)− x

χ(γ)− 1
and ∇(i)(x) = limβi→1

βi(x)− x

ci(βi)
.

With this, we can easily describe the actions of K
(pf)
∞ -linear derivations {∇(i)}ei=0

on K
(pf)
∞ [[t, t1, . . . , te]] = D+

e-dif(Qp) where Qp is equipped with the structure of
p-adic representations of GK induced by the trivial action of GK .

Lemma 3.2. The actions of K
(pf)
∞ -linear derivations {∇(i)}ei=0 on K

(pf)
∞ [[t, t1, . . . ,

te]] are given by ∇(0) = t d
dt

and ∇(i) = t d
dti

(1 ≤ i ≤ e).

Proof. Since {∇(j)}ej=0 are K
(pf)
∞ -linear derivations and we can see that we have

∇(j)(tk) = 0 (j ̸= k) and ∇(i)(t) = 0 (i ̸= 0), it suffices to show that we have
∇(0)(t) = t and ∇(i)(ti) = t. These follow from

∇(0)(t) = limγ→1
γ(t)− t

χ(γ)− 1
= limγ→1

χ(γ)t− t

χ(γ)− 1
= t

∇(i)(ti) = limβi→1
βi(ti)− ti
ci(βi)

= limβi→1
(ti + ci(βi)t)− ti

ci(βi)
= t.

□

We extend naturally actions of K
(pf)
∞ -linear derivations {∇(i)}ei=0 on K

(pf)
∞ [[t, t1,

. . . , te]] to K
(pf)
∞ [[t, t1, . . . , te]][t

−1] (⊂ BdR,K) by putting ∇(0)(t−1) = −t−1 and
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∇(i)(t−1) = 0 (1 ≤ i ≤ e). Now, we compute the bracket [ , ] of derivations
{∇(i)}ei=0 on DBri(V ) (resp. D+

e-dif(V )).

Proposition 3.3. On the p-adic differential module DBri(V ) (resp. D+
e-dif(V )),

we have [∇(0),∇(i)] = ∇(i) (i ̸= 0) and [∇(i),∇(j)] = 0 (i, j ̸= 0).

Proof. The second equality follows from the commutativity of βi and βj . For the

first equality, we have the relation γβi = β
χ(γ)
i γ. Then, since we have

limh→0
ah+1 − a

(h+ 1)− 1
= alog(a),

we obtain

[∇(0),∇(i)](∗) =limγ→1
γ − 1

χ(γ)− 1
limβi→1

βi − 1

ci(βi)
(∗)− limβi→1

βi − 1

ci(βi)
limγ→1

γ − 1

χ(γ)− 1
(∗)

=limβi→1limγ→1
γβi − γ − βi + 1

(χ(γ)− 1)ci(βi)
(∗)− limβi→1limγ→1

βiγ − γ − βi + 1

(χ(γ)− 1)ci(βi)
(∗)

=limβi→1limγ→1
β
χ(γ)
i γ − βiγ

(χ(γ)− 1)ci(βi)
(∗)

=limβi→1
βilog(βi)

ci(βi)
(∗)

=∇(i)(∗).

□

Proposition 3.4. The action of the K
(pf)
∞ -linear derivation ∇(i) (i ̸= 0) on

DBri(V ) is nilpotent.

Proof. From the equality∇(0)∇(i)−∇(i)∇(0) = ∇(i), we get∇(0)(∇(i))r−(∇(i))r∇(0)

= r(∇(i))r and tr(r(∇(i))r) = 0 for all r ∈ N. Since the characteristic of K
(pf)
∞

is 0, we obtain tr((∇(i))r) = 0 for all r ∈ N. As is well known in linear algebra,

this shows that the action of the K
(pf)
∞ -linear derivation ∇(i) (i ̸= 0) on DBri(V )

is nilpotent. □

Notation . For simplicity, put

R = K(pf)
∞ [t,

t1
t
, . . . ,

te
t
] or K(pf)

∞ [[t, t1, . . . , te]].

Proposition 3.5. Let M be a finitely generated free R[1/t]-module endowed with

K
(pf)
∞ -linear derivations {∇(i)}ei=0 which satisfy the same properties in Lemma 3.2

and Proposition 3.3. Assume that we can choose a basis {gj}
d
j=1 of M over R[1/t]

such that ∇(0)(gj) = 0. Then, the action of ∇(i) (i ̸= 0) on this basis is given by

∇(i)(gj) = t
∑d

k=1 ckgk where ck is an element of R such that ∇(0)(ck) = 0.
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Proof. Since {gj}
d
j=1 forms a basis of M over R[1/t], we can write, for i ̸= 0,

∇(i)(gj) =
d∑

k=1

akgk (ak ∈ R[1/t]).(3.1)

Then, the relation [∇(0),∇(i)] = ∇(i) (i ̸= 0) of Proposition 3.3 says that we have∑d
k=1∇(0)(ak)gk =

∑d
k=1 akgk. Note that we have ∇(0)(gj) = 0 by hypothesis.

Hence, we obtain the differential equation ∇(0)(ak) = ak. Define an element ck of
R[1/t] to be ak/t. Then, we can see that ck satisfies ∇(0)(ck) = ak/t − ak/t = 0
and that ck is contained in R. Thus, the solution of the differential equation
∇(0)(ak) = ak in R[1/t] has the following form

ak = ckt(3.2)

where ck is an element of R such that ∇(0)(ck) = 0. Hence, from (3.1) and (3.2),

we obtain, for i ̸= 0, ∇(i)(gj) = t
∑d

k=1 ckgk where ck is an element of R such that
∇(0)(ck) = 0. □
Corollary 3.6. With notations as in Proposition 3.5 above, we have the following
presentation

(∇(1))k1 · · · (∇(e))ke(gj) = tk1+···+ke

d∑
k=1

ckgk

where ck is an element of R such that ∇(0)(ck) = 0.

4. Proof of the main theorem

In this section, we keep the notation and the assumption in Section 3.

4.1. Main theorem for Hodge-Tate representations.

Proposition 4.1. ([S], Section (2.3)) If V is a Hodge-Tate representation of
GKpf, there exists a Γ0-equivariant isomorphism of Kpf

∞-vector spaces

DSen(V ) ≃
d=dimQpV⊕

j=1

Kpf
∞(nj) (nj ∈ Z).

Remark 4.2. In general, if L denotes a complete discrete valuation field of
characteristic 0 with perfect residue field of characteristic p > 0 and V is a Hodge-
Tate representation of GL = Gal(L/L) where we choose an algebraic closure L
of L, Sen shows that there exists a GL/H-equivariant isomorphism of L∞(=
∪m≥1L(ζpm))-vector spaces ([S], Section (2.3))

DSen(V ) ≃
d=dimQpV⊕

j=1

L∞(nj) (nj ∈ Z).
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Corollary 4.3. For a p-adic representation V of GK, assume that V is a Hodge-
Tate representation of GKpf. Then, there exists a ∇(0)- equivariant isomorphism

of K
(pf)
∞ -vector spaces

DBri(V ) ≃∇(0)

d=dimQpV⊕
j=1

K(pf)
∞ (nj) (nj ∈ Z).

Here, ≃∇(0) denotes a ∇(0)-equivariant isomorphism. Furthermore, the multiplic-
ity of {nj}

d
j=1 is the same as that of {nj}

d
j=1 in Proposition 4.1.

Proof. From the presentation of Proposition 4.1, the action of the Kpf
∞-linear

derivation ∇(0) on DSen(V ) is semi-simple and its eigenvalues are integers. Thus,

the action of the K
(pf)
∞ -linear derivation ∇(0) on the subspace DBri(V ) of DSen(V )

is also semi-simple and its eigenvalues are the same. Therefore, we obtain a ∇(0)-

equivariant isomorphism DBri(V ) ≃∇(0)

⊕d
j=1K

(pf)
∞ (nj) (nj ∈ Z). By tensoring

Kpf
∞⊗K

(pf)
∞

over both sides, we obtain Kpf
∞⊗K

(pf)
∞

DBri(V ) ≃∇(0)

⊕d
j=1K

pf
∞(nj) (nj ∈

Z). Furthermore, since we have Kpf
∞⊗K

(pf)
∞

DBri(V ) ↪→ DSen(V ) by definition and

both sides have the same dimension d over Kpf
∞, we obtain Kpf

∞ ⊗K
(pf)
∞

DBri(V ) =

DSen(V ) and can see that the multiplicity of {nj}
d
j=1 is the same as that of {nj}

d
j=1

in Proposition 4.1. □

Theorem 4.4. Let K be a complete discrete valuation field of characteristic 0
with residue field k of characteristic p > 0 such that [k : kp] = pe < +∞ and
V be a p-adic representation of GK. Let Kpf be the field extension of K defined
as before. Then, V is a Hodge-Tate representation of GK if and only if V is a
Hodge-Tate representation of GKpf .

Proof. We shall prove the main theorem in two parts.

(1) V : HT rep. of GK ⇒ V : HT rep. of GKpf

Since V is a Hodge-Tate representation of GK , there exists a GK-equivariant
isomorphism of BHT,K-modules

BHT,K ⊗Qp V ≃ (BHT,K)
d=dimQpV .(4.1)

Now, by tensoring BHT,Kpf⊗BHT,K
(which is induced by the GKpf-equivariant sur-

jection p : BHT,K ↠ BHT,Kpf : ti/t 7→ 0) over (4.1), we obtain a GKpf-equivariant
isomorphism of BHT,Kpf-modules

BHT,Kpf ⊗Qp V ≃ (BHT,Kpf)d.

This means that V is a Hodge-Tate representation of GKpf .
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(2) V : HT rep. of GKpf ⇒ V : HT rep. of GK

For simplicity, put R = K
(pf)
∞ [t, t1

t
, . . . , te

t
]. We shall construct the K

(pf)
∞ -linearly

independent elements {f
(∗)
j }

d=dimQpV

j=1 of R[1/t] ⊗
K

(pf)
∞

DBri(V ) (⊂ BHT,K ⊗Qp V )

such that ∇(i)(f
(∗)
j ) = 0 for all 0 ≤ i ≤ e and 1 ≤ j ≤ d.

(A) Construction of {f
(∗)
j }dj=1 ∈ R[1/t]⊗

K
(pf)
∞

DBri(V )

From the presentation of Corollary 4.3 above, if we twist by some powers
of t, we obtain a basis {fj}

d
j=1 of R[1/t] ⊗

K
(pf)
∞

DBri(V ) over R[1/t] such that

∇(0)(fj) = 0 for all 1 ≤ j ≤ d. Thus, by applying Corollary 3.6 to the R[1/t]-

module R[1/t]⊗
K

(pf)
∞

DBri(V ) generated by {fj}
d
j=1, we can deduce

(∇(1))k1 · · · (∇(e))ke(fj) = tk1+···+ke

d∑
k=1

ckfk(4.2)

where ck is an element of R such that ∇(0)(ck) = 0. Furthermore, since the action

of K
(pf)
∞ -linear derivation ∇(i) (i ̸= 0) on DBri(V ) is nilpotent by Proposition 3.4,

if we take n ∈ N large enough, we obtain

(∇(i))n(fj) = 0 for all 1 ≤ j ≤ d and 1 ≤ i ≤ e.(4.3)

Define an element f
(∗)
j of R[1/t]⊗

K
(pf)
∞

DBri(V ) by

f
(∗)
j =

∑
0≤k1,...,ke

(−1)k1+···+ke
tk11 · · · tkee

k1! · · · ke!tk1+···+ke
(∇(1))k1 · · · (∇(e))ke(fj).

Note that this series is a finite sum by (4.3) and thus f
(∗)
j actually defines an

element ofR[1/t]⊗
K

(pf)
∞

DBri(V ). Then, it follows easily that we have∇(i)(f
(∗)
j ) = 0

for all 1 ≤ i ≤ e and 1 ≤ j ≤ d by using the Leibniz rule. Furthermore, by using

(4.2) and the fact ∇(0)(fj) = 0, we can deduce that we have ∇(0)(f
(∗)
j ) = 0 for all

1 ≤ j ≤ d.

(B) {f
(∗)
j }dj=1 ∈ R[1/t]⊗

K
(pf)
∞

DBri(V ) is linearly independent over K
(pf)
∞

By the presentation of f
(∗)
j , we have

f
(∗)
j = fj + gj (gj ∈ (

t1
t
, . . . ,

te
t
)(BHT,K ⊗Qp V )).

Since {fj}
d
j=1 forms a basis of R[1/t]⊗

K
(pf)
∞

DBri(V ) over R[1/t], it is, in particular,

linearly independent over K
(pf)
∞ (⊂ R[1/t]). Thus, {fj = fj

(∗)
}dj=1 (− denotes the

reduction modulo (t1, . . . , te)) is linearly independent over K
(pf)
∞ and we can see

that {f
(∗)
j }dj=1 is linearly independent over K

(pf)
∞ in R[1/t]⊗

K
(pf)
∞

DBri(V ).
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(C) Conclusion

Therefore, on theK-vector space generated by {f
(∗)
j }dj=1, log(γ) and {log(βi)}

e
i=1

act trivially (⇔∇(0)(f
(∗)
j ) = 0 and ∇(i)(f

(∗)
j ) = 0 for all 1 ≤ i ≤ e and 1 ≤ j ≤ d).

Thus, this means that ΓK acts on this K-vector space via finite quotient and

there exists a finite field extension L/K in K
(pf)
∞ such that {f (∗)}dj=1 forms a basis

of DHT,L(V ) over L. Since a potentially Hodge-Tate representation of GK is a
Hodge-Tate representation of GK , this completes the proof. □

4.2. Main theorem for de Rham representations.

Lemma 4.5. For a p-adic representation V of GK, assume that V is a de Rham

representation of GKpf. Then, we can choose a basis {hj}
d=dimQpV

j=1 of D+
dif(V )[1/t]

over Kpf
∞[[t, t1, . . . , te]][1/t] such that the action of Γ0 on {hj}

d
j=1 is trivial.

Proof. Since V is a de Rham representation of GKpf , there exists a basis {hj}
d
j=1

of BdR,Kpf ⊗Qp V over BdR,Kpf such that the action of GKpf on {hj}
d
j=1 is triv-

ial. We can see that these elements {hj}
d
j=1 are contained in D+

dif(V )[1/t] by
definition. For each j, if we twist hj by some power of t, we obtain an el-
ement gj of B+

dR,Kpf ⊗Qp V such that gj ̸∈ tB+
dR,Kpf ⊗Qp V . Then, it follows

that gj is contained in D+
dif(V ) and satisfies gj ̸= 0 (− denotes the reduc-

tion modulo (t, t1, . . . , te)D
+
dif(V )). Since D+

dif(V ) is a free module of rank d

over the local ring Kpf
∞[[t, t1, . . . , te]] and {gj}

d
j=1 forms a basis of DSen(V ) over

Kpf
∞, the lifting {gj}

d
j=1 of {gj}

d
j=1 in D+

dif(V ) forms a basis of D+
dif(V ) over

Kpf
∞[[t, t1, . . . , te]]. Thus, it follows that {hj}

d
j=1 forms a basis of D+

dif(V )[1/t]

over Kpf
∞[[t, t1, . . . , te]][1/t]. □

With notations as above, note that, since we have the inclusion D+
e-dif(V ) ↪→

D+
dif(V )[1/t] by definition, any element g of D+

e-dif(V ) can be written as g =∑+∞
k=l (

∑d
j=1 ajkhj)t

k (ajk ∈ Kpf
∞[[t1, . . . , te]]).

Remark 4.6. Keep the notation as in Lemma 4.5. Since we assume that V is
a de Rham representation of GKpf , by Corollary 4.3, there exists a basis {vj}

d
j=1

of DBri(V ) over K
(pf)
∞ such that ∇(0)(vj) = njvj. Put M = Max(nj)

d
j=1. Then,

for an element g ∈ D+
e-dif(V ), there exists an element

∑+∞
k=n(

∑d
j=1 cjkhj)t

k of

(t, t1, . . . , te)D
+
e-dif(V ) such that we can write

g =
M∑

k=m

(
d∑

j=1

bjkhj)t
k +

+∞∑
k=n

(
d∑

j=1

cjkhj)t
k (bjk, cjk ∈ Kpf

∞[[t1, . . . , te]]).

Thus, g′ =
∑M

k=m(
∑d

j=1 bjkhj)t
k defines an element of D+

e-dif(V ).

Lemma 4.7. With notations as above, for an element g′ =
∑M

k=m(
∑d

j=1 bjkhj)t
k

of D+
e-dif(V ), each (

∑d
j=1 bjkhj)t

k is contained in D+
e-dif(V ).
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Proof. We shall prove this lemma by induction on the smallest degree of g′ with
respect to t. Since we have g′ − (

∑d
j=1 bjmhj)t

m ∈ D+
e-dif(V ) if (

∑d
j=1 bjmhj)t

m

is contained in D+
e-dif(V ), it suffices to show that (

∑d
j=1 bjmhj)t

m is contained

in D+
e-dif(V ). Since the Kpf

∞[[t1, . . . , te]]-linear derivation ∇(0) acts trivially on

{hj}
d
j=1, we have

M∏
k=m+1

(∇(0) − k)(g′) = (
M∏

k=m+1

(m− k))(
d∑

j=1

bjmhj)t
m.

It follows that (
∑d

j=1 bjmhj)t
m is contained in D+

e-dif(V ) since the action of ∇(0)

on D+
e-dif(V ) is stable. Thus, this completes the proof. □

Proposition 4.8. For a p-adic representation V of GK, assume that V is a de
Rham representation of GKpf. Then, there exists a ∇(0)-equivariant isomorphism

of K
(pf)
∞ [[t, t1, . . . , te]]-modules

D+
e-dif(V ) ≃∇(0)

d=dimQpV⊕
j=1

K(pf)
∞ [[t, t1, . . . , te]](nj) (nj ∈ Z).

Proof. Since V is also a Hodge-Tate representation of GKpf , by Corollary 4.3,
there exists a basis {vj}

d
j=1 of D+

e-dif(V )/(t, t1, . . . , te)D
+
e-dif(V ) ≃ DBri(V ) over

K
(pf)
∞ such that it gives a ∇(0)-equivariant isomorphism of K

(pf)
∞ -vector spaces

D+
e-dif(V )/(t, t1, . . . , te)D

+
e-dif(V ) ≃∇(0)

d⊕
j=1

K(pf)
∞ (nj) : vj 7→ tnj .

Since D+
e-dif(V ) is a free module of rank d over the local ring K

(pf)
∞ [[t, t1, . . . , te]],

any lifting {gj}
d
j=1 of {vj}

d
j=1 in D+

e-dif(V ) forms a basis of D+
e-dif(V ) over K

(pf)
∞ [[t,

t1, . . . , te]]. Let {hj}
d
j=1 denote a basis of D+

dif(V )[1/t] over Kpf
∞[[t, t1, . . . , te]][1/t]

such that ∇(0)(hj) = 0 obtained in Lemma 4.5. Then, we may assume that each

gj is written as gj =
∑M

k=m(
∑d

l=1 bklhl) t
k (bkl ∈ Kpf

∞[[t1, . . . , te]]) where we take
M ∈ N as in Remark 4.6. Now, define an element fj of D+

e-dif(V ) (Lemma 4.7
above) by

fj = (
d∑

l=1

bnj lhl)t
nj .

It is easy to see ∇(0)(fj) = njfj. Therefore, the rest is to show that {fj}
d
j=1 forms

a basis of D+
e-dif(V ) over K

(pf)
∞ [[t, t1, . . . , te]]. To prove that {fj}

d
j=1 is a lifting

of {vj}
d
j=1, it suffices to show gj − fj ∈ (t, t1, . . . , te)D

+
e-dif(V ). For each gj, put

sk = (
∑d

l=1 bklhl)t
k ∈ D+

e-dif(V ) (Lemma 4.7 above). Since we have ∇(0)(sk) = ksk
(− denotes the reduction modulo (t, t1, . . . , te)) and this means that sk is an
eigenvector of ∇(0), it follows that the elements {vj, sk ̸= 0}k ̸=nj

are linearly

independent over K
(pf)
∞ in DBri(V ). Since we have vj =

∑M
k=m sk by definition,
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it follows that we obtain sk = 0 for k ̸= nj. This means that we have sk ∈
(t, t1, . . . , te)D

+
e-dif(V ) (k ̸= nj) and gj − fj ∈ (t, t1, . . . , te)D

+
e-dif(V ). Thus, this

completes the proof. □

Remark 4.9. In general, it is evident from the proof that, if L denotes a complete
discrete valuation field of characteristic 0 with perfect residue field of character-
istic p > 0 and V is a de Rham representation of GL = Gal(L/L) where we
choose an algebraic closure L of L, we have a ∇(0)-equivariant isomorphism of
L∞[[t]]-modules

D+
dif(V ) ≃∇(0)

d=dimQpV⊕
j=1

L∞[[t]](nj) (nj ∈ Z).

Theorem 4.10. Let K be a complete discrete valuation field of characteristic 0
with residue field k of characteristic p > 0 such that [k : kp] = pe < +∞ and
V be a p-adic representation of GK. Let Kpf be the field extension of K defined
as before. Then, V is a de Rham representation of GK if and only if V is a de
Rham representation of GKpf.

Proof. We shall prove the main theorem in two parts.

(1) V : dR rep. of GK ⇒ V : dR rep. of GKpf

Since V is a de Rham representation of GK , there exists a GK-equivariant
isomorphism of BdR,K-modules

BdR,K ⊗Qp V ≃ (BdR,K)
d=dimQpV .(4.4)

Now, by tensoring BdR,Kpf⊗BdR,K
(which is induced by the GKpf-equivariant sur-

jection p : BdR,K ↠ BdR,Kpf : ti 7→ 0) over (4.4), we obtain a GKpf-equivariant
isomorphism of BdR,Kpf-modules

BdR,Kpf ⊗Qp V ≃ (BdR,Kpf)d.

This means that V is a de Rham representation of GKpf .

(2) V : dR rep. of GKpf ⇒ V : dR rep. of GK

For simplicity, put R = K
(pf)
∞ [[t, t1, . . . , te]]. We shall construct the K

(pf)
∞ -

linearly independent elements {f
(∗)
j }

d=dimQpV

j=1 of R[1/t]⊗RD
+
e-dif(V ) (⊂ BdR,K⊗Qp

V ) such that ∇(i)(f
(∗)
j ) = 0 for all 0 ≤ i ≤ e and 1 ≤ j ≤ d.

(A) Construction of {f
(∗)
j }dj=1 ∈ R[1/t]⊗R D+

e-dif(V )

From the presentation of Proposition 4.8 above, if we twist by some powers of t,
we obtain a basis {fj}

d
j=1 of R[1/t]⊗R D+

e-dif(V ) over R[1/t] such that ∇(0)(fj) =
0 for all 1 ≤ j ≤ d. Thus, by applying Corollary 3.6 to the R[1/t]-module
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R[1/t]⊗R D+
e-dif(V ) generated by {fj}

d
j=1, we can deduce

(∇(1))k1 · · · (∇(e))ke(fj) = tk1+···+ke

d∑
k=1

ckfk(4.5)

where ck is an element of R such that ∇(0)(ck) = 0. Define an element f
(∗)
j of

R[1/t]⊗R D+
e-dif(V ) by

f
(∗)
j =

∑
0≤k1,...,ke

(−1)k1+···+ke
tk11 · · · tkee

k1! · · · ke!tk1+···+ke
(∇(1))k1 · · · (∇(e))ke(fj).

Note that this series converges in R[1/t]⊗RD
+
e-dif(V ) for (t1, . . . , te)-adic topology

by (4.5) and thus f
(∗)
j actually defines an element of R[1/t] ⊗R D+

e-dif(V ). Then,

it follows easily that we have ∇(i)(f
(∗)
j ) = 0 for all 1 ≤ i ≤ e and 1 ≤ j ≤ d by

using the Leibniz rule. Furthermore, by using (4.5) and the fact ∇(0)(fj) = 0, we

can deduce that we have ∇(0)(f
(∗)
j ) = 0 for all 1 ≤ j ≤ d.

(B) {f
(∗)
j }dj=1 ∈ R[1/t]⊗R D+

e-dif(V ) is linearly independent over K
(pf)
∞

By the presentation of f
(∗)
j , we have

f
(∗)
j = fj + gj (gj ∈ (t1, . . . , te)(BdR,K ⊗Qp V )).

Since {fj}
d
j=1 forms a basis of R[1/t]⊗R D+

e-dif(V ) over R[1/t], it is, in particular,

linearly independent over K
(pf)
∞ (⊂ R[1/t]). Thus, {fj = fj

(∗)
}dj=1 (− denotes the

reduction modulo (t1, . . . , te)) is linearly independent over K
(pf)
∞ and we can see

that {f
(∗)
j }dj=1 is linearly independent over K

(pf)
∞ in R[1/t]⊗R D+

e-dif(V ).

(C) Conclusion

Therefore, on theK-vector space generated by {f
(∗)
j }dj=1, log(γ) and {log(βi)}

e
i=1

act trivially (⇔∇(0)(f
(∗)
j ) = 0 and ∇(i)(f

(∗)
j ) = 0 for all 1 ≤ i ≤ e and 1 ≤ j ≤ d).

Thus, this means that ΓK acts on thisK-vector space via finite quotient and there

exists a finite field extension L/K in K
(pf)
∞ such that {f (∗)}dj=1 forms a basis of

DdR,L(V ) over L. Since a potentially de Rham representation of GK is a de Rham
representation of GK , this completes the proof. □
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