CRYSTALLINE AND SEMI-STABLE REPRESENTATIONS IN
THE IMPERFECT RESIDUE FIELD CASE

KAZUMA MORITA

Abstract. Let K be a p-adic local field with residue field & such that [k :
kP] = p° < oo and V be a p-adic representation of Gal(K/K). Then, by using
the theory of p-adic differential modules, we show that V' is a potentially crys-
talline (resp. potentially semi-stable) representation of Gal(K/K) if and only
if V' is a potentially crystalline (resp. potentially semi-stable) representation of
Gal(KPf/KPf) where KP!/K is a certain p-adic local field whose residue field is
the smallest perfect field kP! containing k. As an application, we prove the p-adic
monodromy theorem of Fontaine in the imperfect residue field case.

1. INTRODUCTION

Let K be a complete discrete valuation field of characteristic 0 with residue
field & of characteristic p > 0 such that [k : k] = p® < oo. Choose an algebraic
closure K of K and put G = Gal(K/K). By a p-adic representation of G,
we mean a finite dimensional vector space V' over Q, endowed with a continuous
action of Gi. As in the perfect residue field case, we can define the imperfect
residue field versions of B.s and By and, by using these rings, crystalline and
semi-stable representations of G.

Now, we shall state the main results of this article. Let us fix some notations.
Fix a lift (b;)1<i<e of a p-basis of k in Ok (the ring of integers of K) and for
cach m > 1, fix a p™-th root b/?" of b; in K satisfying (b7 )» = b/7". Put
K®) = Up,oK (57" 1 < i < ¢e) and let K* be the p-adic completion of K®0.
These fields depend on the choice of the sequences (bll /P m)meN. Note that, if V' is
a p-adic representation of G, it can be restricted to a p-adic representation of
G ot = Gal(KPt/ KPY) where we choose an algebraic closure KPf of KPf containing
K. Since KP is a complete discrete valuation field with perfect residue field, we
can apply the classical theory (i.e. in the perfect residue field case) to p-adic
representations of G gpr. Our main results are the following.

Theorem 1.1. With notation as above, we have the following equivalences.
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(1) V is a potentially crystalline representation of G if and only if V is a
potentially crystalline representation of Gy,

(2) V' is a potentially semi-stable representation of Gk if and only if V is a
potentially semi-stable representation of G ypr.

Corollary 1.2. Keep the notation as in Theorem 1.1. Then, V is a de Rham
representation of G if and only if V' is a potentially semi-stable representation

OfGK

This paper is organized as follows. In Section 2, we shall review the definitions
and basic known facts on crystalline and semi-stable representations, first in the
perfect residue field case and then in the imperfect residue field case. In Section
3, first we shall review the theory of p-adic differential modules and then shall
introduce some special elements which behave well under the action of p-adic
differential operators. In Section 4, by using these elements, we shall prove the
main theorem. In Section 5, as an application, we deduce the p-adic monodromy
theorem of Fontaine in the imperfect residue field case (Corollary 1.2) by using
results of Berger [Be] and author [M].
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2. REVIEW OF CRYSTALLINE AND SEMI-STABLE REPRESENTATIONS

2.1. Crystalline and semi-stable representations in the perfect residue
field case. (See [F1] for details.) Let K be a complete discrete valuation field
of characteristic 0 with perfect residue field k of characteristic p > 0. Put Ky =
Frac(W(k)) where W denotes the ring of Witt vectors with coefficients in k.
Choose an algebraic closure K of K and consider its p-adic completion C,. Put

E = iy 0r Cp = L@©, 20, ) | (@0 = 20 20 € ¢, 3.

For two elements z = (V) and y = (y) of E, define their sum and product by
(z + 1)D = lim;_ o0 (20 4y and (2y)D = 20yD. Let € = (¢™) denote
an element of E such that ¢©® = 1 and ¢V # 1. Then, E is a perfect field of
characteristic p > 0 and is the completion of an algebraic closure of k((e —1)) for
the valuation defined by vg(z) = v,(2(?)) where v, denotes the p-adic valuation of
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C, normalized by v,(p) = 1. The field E is equipped with an action of a Frobenius
o and a continuous action of the Galois group G = Gal(K /K) with respect to
the topology defined by the valuation vg. Define E* to be the ring of integers for
this valuation. Put AT = W(E') and BT = AT[1/p] = 1Yo PFlaw] | @ €
E+} where [*] denotes the Teichmiiller lift of % € E+. This ring B+ is equipped
with a surjective homomorphism

0:B" — C,: Zpk[mk] — Zpkx,(go).

Let p denote (p™) € E+ such that p© = p. Then, Ker () is the principal ideal
generated by w = [p] —p . The ring By  is defined to be the Ker (6)-adic

completion of B+
BJR,K = @n20ﬁ+/(Ker (6)").

This is a discrete valuation ring and ¢ = log([¢]) which converges in Bj  is a
generator of the maximal ideal. Put Byg x = B:{R’ x[1/t]. The ring Bygr, x becomes
a field and is equipped with an action of the Galois group Gk and a filtration de-
fined by Fil' Bar = tiB:{R x (i €7Z). Then, (Bgg k)X is canonically isomorphic
to K. Thus, for a p-adic representation V' of Gk, Dar,x (V) = (Bar,x ®q, V)Cx
is naturally a K-vector space. We say that a p-adic representation V of G is a
de Rham representation of G if we have

dimg, V' = dimg Dar,x (V) (we always have dimg, V' > dimg Dgg (V).

Let 0 : At — Oc, be the natural homomorphism where Oc, denotes the
ring of integers of C,. Define the ring Agisx to be the p-adic completion of
the PD-envelope of Ker (6) compatible with the canonical PD-envelope over the
ideal generated by p. Put Bl x = Aais i [1/p] and Bes k = By i [1/t]. These
rings are Ky-algebras endowed with an action of Gk and an action of Frobenius ¢
which commutes with the action of G. Furthermore, since we have the inclusion
K ®k, Beris,k — Bar.k, the ring K ®g, Buis x is endowed with the filtration
induced by that of Bgr . Then, (Beisx)®X is canonically isomorphic to Kj.
Thus, for a p-adic representation V' of Gk, Dais (V) = (Bais,x ®q, V)G s
naturally a Ky-vector space endowed with a Frobenius operator and a filtration
after extending the scalars to K. We say that a p-adic representation V of Gk
is a crystalline representation of Gx if we have

dimg, V' = dimg,Deais x (V)  (we always have dimg, V' > dim gy Deis x (V).

Furthermore, we say that a p-adic representation V' of Gk is a potentially crys-
talline representation of G if there exists a finite field extension L/K in K such
that V' is a crystalline representation of Gp.

Fix a prime element p of O (the ring of integers of K) and an element s =
(s™) € E* such that s = o. Then, the series log(sp~!) converges to an element
Ug in BCJ{R, 5 and the subring B i [us] of Bar x depends only on the choice of .
We denote this ring by By k. Since we have the inclusion K ®g, Bst. k — Bar, Kk
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the ring K ®g, Byt k is endowed with the action of Gk and the filtration induced
by that of Bgr k. The element u, is transcendental over Bs g and we extend
the Frobenius ¢ on Bes x to By x by putting ¢(us) = pus. Furthermore, define
the Beisx-derivation N : By g — Bgx by N(us) = —1. It is easy to verify
Ny = ppN. As in the case of Beuisx, we have (By k)% = K,. Thus, for a
p-adic representation V' of G, Dy (V) = (Byt,x g, V) is naturally a K-
vector space endowed with a Frobenius operator and a filtration after extending
the scalars to K. We say that a p-adic representation V' of Gk is a semi-stable
representation of G if we have

dimg,V = dimg,Dg,x (V) (we always have dimg, V' > dimg, Dy, x(V)).

Furthermore, we say that a p-adic representation V' of Gk is a potentially semi-
stable representation of G if there exists a finite field extension L/K in K such
that V' is a semi-stable representation of Gp.

2.2. Crystalline and semi-stable representations in the imperfect residue
field case. Let K be a complete discrete valuation field of characteristic 0 with
residue field k of characteristic p > 0 such that [k : k] = p® < oo. Here, we do
not assume that the residue field k is perfect. Choose an algebraic closure K of
K and put Gx = Gal(K/K). As in Introduction, fix a lift (b;)1<i<. of a p-basis
of k in Ok (the ring of integers of K) and for each m > 1, fix a p™-th root bil/pm
of b; in K satisfying (bi/pMH)p =b/"" . Put

K — UmZOK(bil/pm, 1<i<e) and KP'= p-adic completion of K9,

These fields depend on the choice of a lift of a p-basis of k in Og. Let k' denote
the perfect residue field of KPf and put KP' = Frac(W (k). Define K; to be
Ky = Kn Kgf. Then, Ky has the residue field & and the extension K/Kj is
finite. If k is perfect (that is e = 0), the field K coincides with K. Further-
more, since Ky is a complete p-ring, it is isomorphic to the field Frac(W (k)) and
thus is endowed with an action of Frobenius ¢. Since K®9 is a Henselian dis-
crete valuation field, we have an isomorphism G gpr = Gal(KPf/KP) ~ Gppn =
Gal(K/K®D) (C Gk) where we choose an algebraic closure KPf of KPf containing
K. With this isomorphism, we identify Gyt with a subgroup of Gx. We have a
bijective map from the set of finite extensions of K9 contained in K to the set
of finite extensions of KPf contained in K®f defined by L — LK. Furthermore,
LKP is the p-adic completion of L. Hence, we have an isomorphism of rings

O%/pP" 0% =~ O /0" O

2>t denote the rings of integers of K and KPf. Thus, the p-adic
completion of K is isomorphic to the p-adic completion of :Fv(_Pf, which we will
write C,. As in Subsection 2.1, construct the rings ET and AT = W(E™) from
this C,. Put Og, = Ox N W(kP). Let a : Og ®o,, AT — Ox/pOx be the

natural surjection and define ;&?FK) to be AJZLK) = lim,,>0(Ok ®oy, AT/ (Ker ()™,

where O and O
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Let O : &?K) ®z, Q, — C, be the natural extension of ¢ : A*[1/p] — C,. Define
Big x to be the Ker (fx)-adic completion of &ZFK) ®z, Qp

B i = limnso(Af, @z, Qp)/(Ker (0)").

This is a K-algebra equipped with an action of the Galois group Gx. Let Z;;

denote (™) € E+ such that b\’ = b; and then the series which defines log([b;]/b;)
converges to an element ¢; in BdR - Then, the ring BdR  becomes a local ring

with the maximal ideal mqg = (¢,¢1,...,t.). Define a filtration on BCJ{RK by
ﬁliB:{R’ x = mir. Then, the homomorphism

f BdR Kpf[[th st 7t6]] — BchrR,K

is an isomorphism of filtered algebras (see [Br2|, Proposition 2.9). From this
isomorphism it follows that

: BT, f<—>BdRK and p: BdRK—»B

dR,KP tli—>0

dR,KPf
are G gpr-equivariant homomorphisms and the composition

poi: Bt

AR, KPf 7 Birx — By

dR,KPf

is an identity. Put Barx = Bgg s[1/t]. Then, K is canonically embedded in
Bar, x and we have a canonical isomorphism (Bgg, K)GK = K. Thus, for a p-adic
representation V' of G, Dar x(V) = (Bar,x ®q, V)% is naturally a K-vector
space. We say that a p-adic representation V' of G is a de Rham representation
of G if we have

dimg,V = dimg Dar,x (V) (we always have dimg,V > dimg Dgr x(V)).

Let Ok, : Ok, ®z AT — Oc, denote the natural extension of 6 : AT — Oc,
where O, (resp. Oc,) denotes the ring of integers of Ky (resp. C,). Define Auis i
to be the p-adic completion of the PD-envelope of Ker (fk,) compatible with the
canonical PD-envelope over the ideal generated by p. Put BCrlS = Acisi[1/p)]

and Beis xk = B:;i& k11/t]. The ring Bes i is the Kp-algebra endowed with an
action of Gk and an action of Frobenius ¢ which commutes with the action of
Gk. Furthermore, since we have the inclusion K ®g, Beris, x < Bar,k (see [Br2,
Proposition 2.47.]), the ring K ®p, Beis i is endowed with the filtration induced

by that of Bag k. For 1 <i <e, put r; = [b] b; € Ok, ®z At Then, we have
r; € Ker (Ag,) for 1 <i < e and an isomorphism

[+ p-adic completion of A gt (11, .., 7e) = Acris i

where (%) denotes PD-polynomial (see [Br2, Proposition 2.39.]). From this iso-
morphism, it follows that

it Beyis kot < Berisxk and  p i Beis g — Beyis ot @ 73+ 0
are G gpe-equivariant homomorphisms and the composition

p 01: Bcris,KPf — Bcris,K - Bcris,Kpf
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is identity. By [Br2, Proposition 2.50.], we have a canonical isomorphism (Beis i )%
= Ky. Thus, for a p-adic representation V' of G, Deis x (V) = (Beris,x ®q, V)Gx
is naturally a Ky-vector space endowed with a Frobenius operator and a filtration
after extending the scalars to K. We say that a p-adic representation V' of Gk
is a crystalline representation of G'x if we have

dimeV = dimKODcris,K(V>'

Note that, for a p-adic representation V' of Gk, we always have dimg,V >
dimpg, Deis x (V) by [Br2, Proposition 3.22.]. Furthermore, we say that a p-adic
representation V' of Gk is a potentially crystalline representation of G if there
exists a finite field extension L/K in K such that V is a crystalline representation
of GL.

Fix a prime element p of Ok and an element s = (s™) € E* such that s = .
Then, the series log(sp~!) converges to an element u, in BCTR x and the subring
Beis.ic[us] of Bar x depends only on the choice of p. We denote this ring by
Bt x. We can prove that the element ug is transcendental over Bes i (see [F1,
4.3.]). Since we have the inclusion K ®g, Byt x <> Bar.x, the ring K ®g, Byt k 18
endowed with the action of G'x and the filtration induced by that of Byr k. We
extend the Frobenius ¢ on Bes x to By, x by putting ¢(us) = pus. Furthermore,
define the Bs g-derivation N : By x — Bgx by N(us) = —1. It is easy to
verify Ny = ppN. As in the case of Ais x, we have an isomorphism

[+ (p-adic completion of Ay got(r1, ..., 7)1/, us, 1/t] = By i
where (x) denotes PD-polynomial. From this isomorphism, it follows that
i1 By got = By g and  p: By g — By gor @ 75+ 0
are G gpe-equivariant homomorphisms and the composition
poi: By ket = Bst i = By ot

is identity. By imitating the result [Br2, Proposition 2.50.], we can show that we
have a canonical isomorphism (B x)¢% = K as follows.

Lemma 2.1. We have (Frac By x)9% = K.
Proof. From the map K ® g, Bst, x < Bar,k, we obtain a G g-equivariant injection
K ®k, Frac By i — Frac Bqr ik by localization. It follows that we have an injec-

tion K ®g, (Frac By x)9% < (Frac Bar x)°%. Since we have (Frac Bag )% =
K, we get dimy, (Frac By x )% < 1 and thus (Frac By )% = K. O

Proposition 2.2. We have (Bg )% = K.
Proof. We have Ky C (By x)“% C (Frac By k)95 = K. O

Thus, for a p-adic representation V' of Gk, Dy (V) = (Ba,x ®q, V)Er s
naturally a Ky-vector space endowed with a Frobenius operator and a filtration
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after extending the scalars to K. We say that a p-adic representation V' of G
is a semi-stable representation of Gx if we have

dimeV = dimKO Dst,K (V) .

Since (B, k)9 is the field K (Proposition 2.2.) and we have (Frac By ;)% =
Ky (Lemma 2.1.), it follows from [Br2, Proposition 3.3.] that we always have
dimg, V' > dimp, Dy, (V). Furthermore, we say that a p-adic representation V'
of Gk is a potentially semi-stable representation of G if there exists a finite field
extension L/K in K such that V is a semi-stable representation of G7.

3. THE THEORY OF p-ADIC DIFFERENTIAL MODULES

In this section, we shall review the theory of p-adic differential modules which
plays an important role in this article. First, let us fix the notations. Let K
be a complete discrete valuation field of characteristic 0 with residue field k of
characteristic p > 0 such that [k : k’] = p® < oo and V' be a p-adic representation
of Gg. Define K®9 and KPf as in Introduction and Subsection 2.2. Put Kégf) =
Um0 K PD(¢pm) (resp. KB = U0 KP((m)) where (,m denotes a primitive p™-
th root of unity in K (resp. KP®f) such that ({m+1)? = (,m. Let KP denote the
p-adic completion of KP!. These fields Kc(,gf), KP! and K Pl depend on the choice
of a lift of a p-basis of k in Og. Then, we have the following inclusions

K& ¢ KPf ¢ KP.

Let H denote the kernel of the cyclotomic character x : Ggpr — Z;. Then,

the Galois group H is isomorphic to the subgroup Gal(K/ Kégf)) of Gk. Define
T'x = Gx/H. Let Ty denote the subgroup Gal(KE"/K®D) (~ Gy /H) of T.
Let I'; (1 < i < e) be the subgroup of 'k such that actions of 5; € I'; (1 <i <e)
satisfy 3;(¢ym) = (pm and Bi(bjl./ Py = bjl-/ P" (i # j) and define the homomorphism
¢; : Ty — Z, such that we have 3;(b,"") = b}/"" C;i,g’g ") Then, the homomorphism
¢; defines an isomorphism I'; ~ Z,, of profinite groups. With this, we can see that
there exist isomorphisms of profinite groups

FK ~ FO X (@lel—‘i) ~ FO X Z;‘?e.

3.1. Review of the classical theory. In this subsection, we will give the def-
initions of p-adic differential modules Dge,(V), Dpy(V), Di(V) and DI (V)
which are obtained by Sen, Brinon, Fontaine and Andreatta-Brinon ([S], [Brl],
[F2], [A-B]). The modules Dge, (V) and D7 (V) are obtained when V is a p-adic
representation of Gal(L/L) where L is a complete discrete valuation field of char-
acteristic 0 with perfect residue field of characteristic p > 0 and we choose an

algebraic closure L of L. However, for simplicity, we will state the results in the
case L = KPF.
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3.1.1. The module Dge,(V'). In the article [S], Sen shows that, for a p-adic repre-
sentation V of G ger, the K Plvector space (C,®g, V)" has dimension d = dimg, V/
and the union of the finite dimensional K¥-subspaces of (C, ®g, V) stable
under Ty (~ Ggwr/H) is a KPl-vector space of dimension d stable under I'y
(called Dgen(V)). We have C, ® ot Dgey (V) = C, ®g, V and the natural map
Kyt ® et Dsen(V) = (C, ®@q, V)™ is an isomorphism. Furthermore, if v € T is
close enough to 1, then the series of operators on Dge, (V)

log(y) 1 (1—)*
))Z

log(x(7)) B _log(X(’y k>1

converges to a KP-linear operator V( : Dg (V) — Dgen(V) and does not
depend on the choice of 7.

3.1.2. The module Dg,;i(V'). In the article [Brl], Brinon generalizes Sen’s work
above. For a p-adic representation V' of G, he shows that the union of the finite
dimensional Kégf)—subspaces of (C, ®qg, V) stable under 'k is a K%Y vector
space of dimension d stable under I' (we call it Dg,(V)). We have C, ® KD

Dg,i(V) = C, ®¢g, V and the natural map f(gj ® oD Dgi(V) — (C, ®q, V)H
is an isomorphism. As in the case of Dge,(V), the Kégf)—vector space Dg;(V) is

endowed with the action of the K& linear operator V(© = % ifyelyis

close enough to 1. In addition to this operator V(| if §; € I'; is close enough to
1, then the series of operators on Dg(V)

log(5; 1 1— Bk
g(5i) )Z( Bi)

ci(Bi) o ci(Bi

converges to a Kégf)—linear operator V& : Dpy(V) — Dgu(V) and does not
depend on the choice of ;.

k>1

3.1.3. The module D},,(V'). In the article [F2], by using Sen’s theory, Fontaine
shows that, for a p-adic representation V of G gor, the union of KP![[t]]-submodules

of finite type of (B jor ®g, V) stable under Ty (~ Gor/H) is a free K2![[t]]-

module of rank d stable under Ty (called D (V). We have BT, . ® K2 1]
Dg(V) = By ket ®g, V and the natural map (B i) @ oy Didie(V) —
(Big ot @0, V)H is an isomorphism. Furthermore, if v € Ty is close enough to

1, then the series of operators on Df (V)

log(y) 1 (1—)*
DEI

log(x (7)) a _log(x(’y k>1

converges to a KP!linear derivation V(© : D1.(V) — DI.(V) and does not
depend on the choice of 7. Note that this DL.(V) is a little different from one
which the author used by the same symbol in the article [M].
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3.1.4. The module D (V). In the article [A-B], Andreatta and Brinon gener-
alize Fontaine’s work above. For a p-adic representation V of G, they show

that the union of Kégf)[[t, t1,. .., te]]-submodules of finite type of (B x ®q, V)"
stable under 'k is a free Kégf)[[t,tl, ..., te]]-module of rank d stable under I'g
(we call it D ;(V)). We have By ® ke, ] D7 4(V) = Bjg x ®q, V and
K&V ([t te]] DZgu(V) = (Bip x ®g, V)" is an iso-
morphism. As in the case of D (V), the K&V[[t ¢y, ..., t.]]-module DI (V) is
endowed with the K EY-linear derivation V@ = _1o80)_ i v € I'y is close enough

— log(x(7))
to 1. In addition to this operator V@ if 3; € I'; is close enough to 1, then the

- +
series of operators on D (V)

log(gi) 1 (1-8)"
ci(Bi) ci(Bi) k

k>1

the natural map (Bgp x)" ®

converges to a K% linear derivation V : D} (V) — DI (V) and does not
depend on the choice of f;.

3.1.5. Some properties of differential operators. We shall describe the actions of
operators {VW3}¢_; on Dg,(V) and D} (V). First, by a standard argument, we
can show that, if € Dpy(V) (resp. D (V)), we have

Bi(z) —x

VO (z) = lim m and V9 (z) = limg _,, 2, =,
( ) ’Y—>1X<,y) 1 ( ) Bi—1 Cz(ﬁz)

With this, we can describe the actions of K&"-linear derivations {V®3_, on the
ring Kégf)[[t,tl, <oy te]] = Deair(Qp) (here Q, is equipped with the structure of
p-adic representations of Gx induced by the trivial action of Gk) as
d - d
v© =t and v =t (1<i<e).
We extend naturally actions of K®"-linear derivations {V®3}_, on Kégf)[[t,tl,
oot to K&Vttt ][] (C Bank) by putting V@(t1) = —¢~1 and

V@O(@#1) =0 (1 < i < e). Furthermore, the bracket |, ] of operators {V®3}¢_,
on Dg,i(V) (resp. D} (V) satisfies (see [M, Proposition 3.3.])

VO VO] =V (i £0) and [VP, VD] =0 (4,5 #0).
3.2. Construction of special elements. In this subsection, we shall introduce

some special elements which behave well under the action of p-adic differential
operators.
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3.2.1. A special basis of D} ,.(V). We shall construct a special basis of D (V)
over K&Vt t1, ..., t.]] which bridges the gap between D,(V) and DF (V) and
behaves well under the action of V(). Note that there is no G g-equivariant
injection K < B§R7 ot We will sometimes write L7 instead of the misleading
KP![t]]. First, let us recall the following result.

Proposition 3.1. [M, Proposition 4.8.] Let V be a p-adic representation of
Gk. If V is a de Rham representation of Gyt there exists a VO -equivariant

isomorphism of Kégf)[[t, t1,. .., te]]-modules
D (V) g0 @ K[t 1y, ... t]]l(ny)  (d = dimg,V, n; € Z).

Next, let us define the K¥![[t,t;,...,t.]]-submodule X of (Bg x ®g, V)" by
X = K};f[[t, by, .. ate“®Kggf>[[t,t1 ,,,,, tel] Didif(v)' If we put D:—’d(i?(v> = Didif(v)/(ta
t1, ... te)" DL gi(V), we have the inclusion K@ o DOV = Lt ... L))/
(t,t1,. .. te)" ®r+ D1..(V) by the theory of Sen. Since both sides have the same

dimension over KP! the inclusion above actually gives an isomorphism. By tak-
ing the projective limit with respect to r, we obtain a I'p-equivariant isomorphism

X = Ligllts, .. te]l @1 Dgye(V).

Proposition 3.2. Let V be a p-adic representation of Gi. If V is a de Rham
representation of Ggvt, there exists a basis {fj}?:1 of D3.(V') over L} such that

(1) QA f;30_, forms a basis of D} 4,,(V) (C X = Li[[t1, - .. ,te]]®Ld+ifD;ﬁf(V))
over Kégf)[[t, t1, .., tel],

(2) the action of V© on {1 ® fj};?:1 is given by VO(1 @ f;) = n;(1® f;)
where the integers n; are those of Proposition 3.1.

Proof. Let {G;}_; denote a basis of Dj;(V) over KEFI[[t]]. Since D} (V) is a
submodule of X' = Liglt1,... t]] @1+ Dgy(V), any element of D g,(V) can
be written as linear combinations of {1 ® Gj}?zl over Lid[t1,...,te]]. On the
other hand, fix a basis {F;}]_; of D7 (V) over Kégf)[[t, t1,...,t]] that gives the
isomorphism of Proposition 3.1, that is, V(O (F}) = n;F; with n; € Z. Then, we
can write

(3.1) 1®F; = Z £ e @ (Z ag;nl ..... me)Gk)

(m1,...,me)ENE k=1

where the a%l """ ") are elements of L}, Put f; = 3¢, aﬁ """ Gy, € DL(V).
Then, it follows that we have VO (f;) = n;f;. On the other hand, we have
{Tj = Fj};-lzl in Dge, (V) where — denotes the reduction modulo (t,t,...,t.)X.
Since {F;}9_; forms a basis of Dgen(V) over KEf, the lift {1 ® f;}9_; of {f; =

Fj}?zl in X forms a basis of X over K[t t,...,t]]. Furthermore, since
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{ f] _, are elements of Di(V), it follows that { f] _, also forms a basis of

Dgf(V) over KPIH[t]]. Thus, it remains to show that {1® fj}]: forms a ba-
sis of DY (V) over K[t ty,... t.)]. Put X, = X/(t,t1,...,t.)"X. Let
Y, denote the K pf)[[t t1,...,t]]-submodule of X, generated by the finite set

10 jml """ me) Gk}] m1+ tme<r C (BdR ot @g, V). Then, it follows that this

finitely generated K7 [[t,t1,...,t]]-module Y, is stable under the action of 'k
by (3.1) and thus is contained in D;fé(i?(V) by definition. On the other hand,
Y, contains the elements {1 ® fj}j»lzl which are linearly independent over KP![[t,
t1, ..., t)]/(t, t1, ..., te)". Thus, both of Y, and D;f(’i(f?(V) have the same dimen-
sion over K%Y and we get the equality Y, = D_ d(lf)(V). Therefore, by taking the
projective limit with respect to r, we conclude that {1 ® fj}?zl (C @T Y,.) forms

a basis of D (V) over K&V[[t ¢, ..., t.]]. O
Lemma 3.3. By restricting V® : D (V) — DI (V) (0 < i < e), we obtain
V(Z) : Didif(‘/) a (B:R,Kpf ®Qp V>H - D:-dif(v) N <B$R7Kpf ®@p V)H m (BS_R,K ®Qp
V)H.

Proof. For simplicity, put Lz = (Byy xer)”s Lig(V) =
Z = (Big x®q,V)". Let mgg denote the maximal ideal (t,
Then, we have

= @TZ/mERZ D Lip(V)= 1gﬂr[«JfR(V)/(mSRZ N Lig(V))
U

Dlgy(V) = L cait(V)/(marZ N D gie(V)).

Define W as the LI, N K&V[[t, ¢4, . .., t.]]-submodule of Z generated by L (V)N
DF (V). If we put W = lim W, where W, denotes W/(mggZ NW), we have
Liz(V) D W and D} (V) D W. Thus, we obtain W = W by definition.
Therefore, it suffices to show that W, is stable under the actions of {V(i)}fzo
Fix a basis {g; }h Lof DY (V) /(migZN DY (V) over K&V Then, there exists
a finite field extension L/K in K%Y such that @?:1[/ - g; is stable by the action
of 'y = Ggx/H = Gal(KéEf)/K). Thus, there exists an open subgroup I'; of T;
such that, for all v € I'j (resp. f; € I'}), the action of v (resp. ;) on 69?:1[/ - g;
is L-linear. Then, the series

log(7) = —Z% (resp. log(;) = Z — 1

k=1 k=1

( dR, Kpf ®Qp V)H and
t1, .. te) of (B i)™

converges to an endomorphism of @?ZlL - gj. These actions on 63?:112 - gj can be
extended to those on D . (V) /(m5 Z N DF (V) by K& -lincarity. Since W, is
contained in DY (V) /(mirZ N DI ,(V)) and stable under the action of T'g, it

follows that W, is equipped with actions of V() lolgo(g ) and VO log( BB Z)) 0
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3.2.2. ﬁcris, xot(V) and ESm xot(V). In this subsection, for simplicity, we shall de-
note Bcris,KPf = (Bcris,KPf)H and Dcris,KPf(V) - (Bcris,KPf ®Qp V)H (I‘eSp. Bst,KPf =
(Bst,Kpf)H and Dst,Kpf(V) = (Bst,KPf ®Qp V)H)

Proposition 3.4. (c¢f. Proposition 3.2.) Let V be a p-adic representation of
Gr. If V is a crystalline (resp. semi-stable) representation of G ot, there ezists
a basis {gj-};l:1 0f Deyis icot (V') over Beg ot (Tesp. Dy ot (V) over By got) such
that

(1) {gj}?:1 forms a basis of D ,.(V)[1/t] over Kégf)[[t,tl, o]/,
(2) {gj}?zl is contained in Ker (V) (C D} (V)[1/t]).

Proof. Since the semi-stable representation case is similar, we shall consider only
the crystalline representation case. Since V is also a de Rham representation
of G er, by Proposition 3.2, there exists a basis {f;}_; of DJ(V) over KE[[t]]
such that (1) {1®fj}§l:1 forms a basis of D ..(V) over Kégf)[[t, t1,...,t]] and (2)
VO(1®f;) = n;(1®f;) with n; € Z. Then, since the action of V® on {f;# 7" }?:1
is trivial and {fjt_nj};l:l is contained in D3(V)[1/t] C (Barxet @ V), there
exists a finite field extension LPf/KPfin KPf such that {f;t" }?:1 forms a basis
of Dyg ree(V) over LPL. If K = Ky(a) and LP' = KP(3) for some 8 = (,n € K&,
there exists an element a € KE” such that Ko(a, 8) = Ko(a). Then, we have
P = KM(a, B) = KP'(a) = LE'(a). Since V is also a crystalline representation
of G'rer, we have Dgg rot(V) = Lgf(a) ®ppe D yis 1ot (V). Thus, we can write

0—1
(32) fjtinj - Za'k ® 9jk (g]k € Dcris,LPf(V)7 0= [L8f<a) : Lgf])
k=0

We can extract a basis of D ret(V) over Lgf from the family {g;r};x: de-
note it by {gj}?zl. Since we have B gt ® Lyt Doyis 1ot(V) =~ Beyis ieot ®q, V,
by taking the invariant part by H, it follows that {gj};l:1 forms a basis of
5cris,Kpf(V) over écri& xvt. Furthermore, by (3.2), the action of V(® on {gj};-l:1
is trivial. Thus, it remains to show that {g;}_, forms a basis of D ;(V)[1/1]
over KEV[[t, ¢y, ..., t.]][1/1]. First, let Z, denote the union of K&V [[t,t1,.. ., t.]]-
submodules of finite type of (B x ®q, V)" /(t,t1,. .., t)" (Bir x ®@q, V)" that
are stable under the action of an open subgroup I" of I'x. Since we have the inclu-
sion D:d(irf)(\/) — Z, by definition and both sides have the same dimension over

Kégf), we have Di;i(i?(V) = Z,. Thus, by taking the projective limit with respect

=J W, VY=h >

=J W, VUSh >
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Let Z denote the K&[[t,t1, ..., t.]]-submodule of (Big.x ®q, V)" generated by

=J W, USh >

that the action of I' on the finite set {ak}i;%) is trivial. Then it follows from (3.2)

that this finitely generated K" [[t,t1, ..., te]]-module Z is stable under the action
of I' and thus is contained in D ;,(V') by the preceding argument. In particular,
it follows that the elements {gj};l:1 are contained in DT ,.(V)[1/t]. Furthermore,

since {g; }?:1 forms a basis of Byr,x ®q, V' over By, k, it is, in particular, linearly
independent over Byr,x in Bar,x ®q, V. Take m; € Z such that we have
{g; = tmjgj}j‘l:l C DL (V).

Let (V) be the submodule of By x ®q, V generated by {9;}?:1 over By g
and let D(V') denote the union of Kégf)[[t,tl, ..., te]]-submodules of finite type
of L(V)# stable under I'g. Since {9}}?:1(C D(V)) forms a basis of L(V) over
By g it follows that {g}}?zl also forms a basis of D(V') over Kégf)[[t, t1, ..., te]]
(see [A-B, Lemma 5.10]). For any element x € D ;(V)[1/¢], one can see that
there exists an integer m € Z such that we have t"x € D(V'). Thus, "™z can be

written as linear combinations of {g;-};lzl over K. égf)[[t, t1,...,te]]. It follows that
{g;¥0_, forms a basis of D (V)[1/1] over K& ([t t1,...,t.]J][1/1]. 0

From now on, we shall keep the notation and assumptions of Proposition 3.4.
The following result is proved in Proposition 3.5 and Corollary 3.6 of [M].

Proposition 3.5. The action of {V3}¢_, on the basis {gj};l:1 is given by (V(1)k
o (V@ke(gy) = ghitotke S g0 where the ¢y (B = (k... ko)) are ele-
ments of K&V[[t,t1,. .. t.]] such that VO (c; ) = 0.

Proposition 3.6. Let V' be a p-adic representation of Gg. If V is a crystalline
(resp. semi-stable) representation of G o, we have

(V)i (V)¥e(g;) € Degisiere (V) (resp. € Dy geoe(V))
fO’f’ all (ki)lgige e N°and 1 S j S d.

Proof. Since the semi-stable representation case is similar, we shall consider only
the crystalline representation case. It is enough to prove that if g € D ,.(V)[1/¢]

is such that g € 5cris’Kpf(v> and V©(g) = 0, then (VM)k...(VE)ke(g) €
15“15’ ot (V) for all (k;)1<i<e € N°. Since the proof of the general case is exactly the
same (only with heavier notations), we just show that V@ (g) € l~)cr157 ot (V) for
1 <i<e. First, forr € Nygand h € D} ..(V), there exists an open subgroup F?’r
of T; such that we have §;(h) = exp(c;(8;)V®)(h) mod (t,t1,...,t.)" DI (V)
for all B; € T (see [A-B] and [F2]). Thus, if we take M € N such that tMg €
DY .(V), we obtain

(3.3) Bi(tMg) =tMg + %ﬁ!i))l(v(i))l(t]wg) + %(V(i))z(ﬂwg) + e
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mod (t,t1,...,t)" Dl (V) for all §; € FEMQ’T. Note that this series is a fi-
nite sum mod (¢,ty,...,t.)" DI (V) by Proposition 3.5. Thus, there exists
L € N such that we have (VO)L(tMg) # 0 and (V@)L (#Mg) = 0 mod
(t,t1, ..., te)"DF (V). On the other hand, since we have (V)/(g) € (Byr xr®q,
V)7 by Lemma 3.3 and V(L (V®)i(g)) = 0 by Proposition 3.5, there exists a
finite field extension M™/KP" in K¥! such that {5 (V®)7(g)}1, is contained in
Dar ot (V). Write MPF = M, pf(b). Then, since V is also a crystalline representa-
tion of G e, we have the equality Dag aet(V) = M f(h)® Mt D i prot (V). Thus,
we can write

(34) (V(Z Z " ® Qi5mn9n (aijmn € Ecris,KPf>'

m,n

By (3.3) and (3.4), we obtain

L

(35) Bi(tMg) =t "t @ () (e 5@ azjmntj)gn (mod (t,t1,...,t.)").
m,n 7=0

On the other hand, since 5criS7Kpf(V) is stable under the action of I‘fMg’r and

{31 (6 = [MPF: MPY) is linearly independent over Besis it the terms of the

RHS of (3.5) have to be 0 for m # 0. Then, for m # 0, we have Z] 050 X ijmnt?’ =0
for A in an open subgroup of Z,: this implies that a;jm, = 0 for m # 0. In
particular, we obtain V) (g) € Deyis ot (V) (i # 0) by (3.4). O

4. PROOF OF THE MAIN THEOREM

In this section, we will give proofs only in the crystalline representation case
since the semi-stable representation case is similar.

Proposition 4.1. We have the following implications.

(1) If V is a crystalline representation of Gk, then it is a crystalline repre-
sentation of G got.

(2) If V is a semi-stable representation of Gk, then it is a semi-stable repre-
sentation of G yot.

Proof. Since V is a crystalline representation of G g, there exists a G'g-equivariant
isomorphism of B.s x-modules

(41) Bcris,K ®Qp V ~ (Bcrjs,K)d (d = leh@pV)

By tensoring (4.1) by B ret over Beis x (which is induced by the G gpr-equivariant
surjection p : Beis k' — Beis reot @ 7+ 0), we obtain a G gpe-equivariant isomor-
phism of B ger-modules

d
Bcris,Kpf ®Qp V ~ (Bcris,KPf> .
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This means that V' is a crystalline representation of Ggpt. U

Proof of Theorem 1.1. It remains to show that, if V' is a p-adic representation of
Gk whose restriction to Gyt is crystalline, then V' is a potentially crystalline
representation of Gi. Since V is a crystalline representation of G, there
exists a basis {gj};l:1 of lN)Cm wot (V) over écris’ xef which satisfies the properties
in Proposition 3.4. From this {gj};l:l, for all finite extension L/K in K, we shall
construct LE-linearly independent elements { fj}?:1 in Beis, x ®q, V' such that
VO(f;)=0(0<Vi<eand 1 <Vj<d).

(A) Construction of {fj}?zl in Buisx ®q, V.

By Propositions 3.5 and 3.6, we have (V))k1 ... (V(©)ke(g) = ghitthe S0
cjugr where the ¢jy (k= (ki,. .., k.)) are elements of B, . such that V© (c;y)
= 0. On the other hand, for N € N, we obtain,

d

(4.2) NV (V) (g)) = (pryfrtothe Y 7 pN Rt tRd N (e 1)
=1

where the ™V *!(¢;y) are elements of BY. .. such that VO (N (¢;,)) = 0.

Let U; denote the matrix which represents the action of VW /¢t (1 < i < e) with

respect to the basis {gj}?:1 and take N large enough such that we have pNU, €

Mg (Aeis ieot) for all 1 <4 <e. On the other hand, by applying the same method

as in Proposition 3.6 to the entries of U;, we have viﬂ (pNU;) € My(Beyis icot)- Since

we have V(O)(y(pNUi)) = 0, this means that we obtain Y2 (pNU;) € Mgy (L5

: ¢
for a finite extension L/K in K and, in particular, v (PNU;) € My(B* ) (1<
i,j < €). Furthermore, since VY is the form ¢-- on KEV[t, ¢y, ... t.]] and T2 =
J

t cris, K Pf
t

%_ does not decrease the p-adic valuation of an element of Kégf)[[t, t1, ..., t]] N

Aeris. vt (C Bar,i), we obtain Vij) (PNU;) € My(Aeris iot) (1 < 0,5 < e). Thus,

it follows that we have pV(kit-+kec,, € Acyis ot and pNRt R N FL () €
ACI‘iS,KPf' Deﬁne {fj};izl C Bcri&K ®Qp V by

.. .t’efe .
fim 0 (e V(T (V) )

0<kq,....ke

where t; = log([b;]/b;) denotes the element of Ker (8x,) (C Aeisx). Note that
this series converges in Beis x ®q, V for the p-adic topology by (4.2) and thus
[ actually defines an element of Bk ®qg, V. Then, it is easy to verify that
we have V(i)(fj) =0foralll <i<eand 1l <j <d by using the Leibniz rule.
Furthermore, by using (4.2) and the fact VO (o¥*1(g;)) = 0, we can deduce that
we have V(O)(fj) =0foralll <j<d.
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(B) {f;}¥_1 C Buis,x ®g, V is linearly independent over LY,
The homomorphism p : Beig x — Beyis it induces
Beris,x ®q, V = Bais gt Qq, V 1 f; SONH(QJ')-

Since {g; }?:1 forms a basis of ﬁcris’ ot (V) over écris’ ot and satisfies V(©(g;) = 0,
there exists a finite field extension M/K in K such that {gj}?zl forms a basis
Of Deyis prot(V) over ME f. Furthermore, since o : Deyis ot (V') = Deis ot (V) s
bijective, {©V +1(gj)}§-l:1 also forms a basis of Dy pet(V) over Mopf. Thus, it
follows that { fj}?:1 is linearly independent over Lgf in Beis, x ®q, V' for all finite
extension L/K in K.

(C) Conclusion.

The maps log(y) and log(5;) (1 < i < e) act trivially on the Ky-vector space
generated by {fj}?:1 (because VO (f;) =0 and VO(f;) =0forall 1 <i < e and
1 < j < d). This means that I'x acts on this Ky-vector space via finite quotient
and there exists a finite field extension L/K in K such that { fj};l:l forms a basis

of Deis.r.(V)) over Lo (C LY. O

Remark 4.2. Since the proof is carried out by using the differential operators,
it is not obvious whether we can get rid of the potentiality from the statement of
the main theorem.

5. THE p-ADIC MONODROMY THEOREM OF FONTAINE IN THE IMPERFECT
RESIDUE FIELD CASE

In this section, we generalize the p-adic monodromy theorem of Fontaine to
the imperfect residue field case. Now, we recall the results of [Be] and [M].

Theorem 5.1. [Be, Corollary 5.22.1 Let L be a complete discrete valuation field
of characteristic 0 with perfect residue field of characteristic p > 0 and V' be a
p-adic representation of Gr,. Then, V s a de Rham representation of Gy, if and
only if V' is a potentially semi-stable representation of Gp.

Theorem 5.2. [M, Theorem 4.10.] Let K be a complete discrete valuation
field of characteristic 0 with residue field k of characteristic p > 0 such that
[k : kP] = p° < 0o and V be a p-adic representation of Gy. Let KP' be the field
extension of K defined as before. Then, V is a de Rham representation of Gk if
and only if V' is a de Rham representation of Gps.

Since KP! has perfect residue field, we can apply Theorem 5.1 to the restriction
of V' to Gpr.

Proof of Corollary 1.2. V is a de Rham representation of G if and only if V
is a de Rham representation of Ggpr by Theorem 5.2. Next, V is a de Rham
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representation of G gt if and only if V' is a potentially semi-stable representation
of Ggpt by Theorem 5.1. Finally, V' is a potentially semi-stable representation
of Gy if and only if V' is a potentially semi-stable representation of Gg by
Theorem 1.1. 0

REFERENCES

[A-B] Andreatta, F.; Brinon, O.: Bqr -representations dans le cas relatif. Ann. Sci. Ecole Norm.

Sup. (4) 43 (2010), no.2, 279-339.

Berger, L.:Représentations p-adiques et équations différentielles. Invent. Math. 148
(2002), 219-284.

Brinon, O.: Une generalisation de la theorie de Sen. Math. Ann. 327 (2003), 793-813.
Brinon, O.:Représentations cristallines dans le cas d’un corps résiduel imparfait. Ann.
Inst. Fourier (Grenoble). 56(4) (2006), 919-999.

Fontaine, J-M.:Le corps des périodes p-adiques. Périodes p-adiques (Bures-sur-Yvette,
1988). Astérisque No. 223 (1994), 59-111.

Fontaine, J-M.: Arithmétique des représentations galoisiennes p-adiques. Cohomologies
p-adiques et applications arithmetiques. III. Astérisque No. 295 (2004), 1-115.

Kato, K.:Generalized explicit reciprocity laws. Algebraic number theory. Adv. Stud.
Contemp. Math. (Pusan) 1 (1999), 57-126.

Morita, K.: Hodge-Tate and de Rham representations in the imperfect residue field case.
Ann. Sci. Ecole Norm. Sup. (4) 43 (2010), no.2, 341-356.

Sen, S.:Continuous cohomology and p-adic Galois representations. Invent. Math. 62
(1980/81), 89-116.

DEPARTMENT OF MATHEMATICS, HOKKAIDO UNIVERSITY, SAPPORO 060-0810, JAPAN

E-mail address: morita@math.sci.hokudai.ac.jp



