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Abstract. Let K be a p-adic local field with residue field k such that [k :
kp] = pe < ∞ and V be a p-adic representation of Gal(K/K). Then, by using
the theory of p-adic differential modules, we show that V is a potentially crys-
talline (resp. potentially semi-stable) representation of Gal(K/K) if and only
if V is a potentially crystalline (resp. potentially semi-stable) representation of

Gal(Kpf/Kpf) where Kpf/K is a certain p-adic local field whose residue field is
the smallest perfect field kpf containing k. As an application, we prove the p-adic
monodromy theorem of Fontaine in the imperfect residue field case.

1. Introduction

Let K be a complete discrete valuation field of characteristic 0 with residue
field k of characteristic p > 0 such that [k : kp] = pe < ∞. Choose an algebraic
closure K of K and put GK = Gal(K/K). By a p-adic representation of GK ,
we mean a finite dimensional vector space V over Qp endowed with a continuous
action of GK . As in the perfect residue field case, we can define the imperfect
residue field versions of Bcris and Bst and, by using these rings, crystalline and
semi-stable representations of GK .

Now, we shall state the main results of this article. Let us fix some notations.
Fix a lift (bi)1≤i≤e of a p-basis of k in OK (the ring of integers of K) and for

each m ≥ 1, fix a pm-th root b
1/pm

i of bi in K satisfying (b
1/pm+1

i )p = b
1/pm

i . Put

K(pf) = ∪m≥0K(b
1/pm

i , 1 ≤ i ≤ e) and let Kpf be the p-adic completion of K(pf).

These fields depend on the choice of the sequences (b
1/pm

i )m∈N. Note that, if V is
a p-adic representation of GK , it can be restricted to a p-adic representation of
GKpf = Gal(Kpf/Kpf) where we choose an algebraic closure Kpf of Kpf containing
K. Since Kpf is a complete discrete valuation field with perfect residue field, we
can apply the classical theory (i.e. in the perfect residue field case) to p-adic
representations of GKpf . Our main results are the following.

Theorem 1.1. With notation as above, we have the following equivalences.
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(1) V is a potentially crystalline representation of GK if and only if V is a
potentially crystalline representation of GKpf,

(2) V is a potentially semi-stable representation of GK if and only if V is a
potentially semi-stable representation of GKpf.

Corollary 1.2. Keep the notation as in Theorem 1.1. Then, V is a de Rham
representation of GK if and only if V is a potentially semi-stable representation
of GK.

This paper is organized as follows. In Section 2, we shall review the definitions
and basic known facts on crystalline and semi-stable representations, first in the
perfect residue field case and then in the imperfect residue field case. In Section
3, first we shall review the theory of p-adic differential modules and then shall
introduce some special elements which behave well under the action of p-adic
differential operators. In Section 4, by using these elements, we shall prove the
main theorem. In Section 5, as an application, we deduce the p-adic monodromy
theorem of Fontaine in the imperfect residue field case (Corollary 1.2) by using
results of Berger [Be] and author [M].
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2. Review of crystalline and semi-stable representations

2.1. Crystalline and semi-stable representations in the perfect residue
field case. (See [F1] for details.) Let K be a complete discrete valuation field
of characteristic 0 with perfect residue field k of characteristic p > 0. Put K0 =
Frac(W (k)) where W denotes the ring of Witt vectors with coefficients in k.
Choose an algebraic closure K of K and consider its p-adic completion Cp. Put

Ẽ = lim←−x 7→xpCp = {(x(0), x(1), ...) | (x(i+1))p = x(i), x(i) ∈ Cp}.

For two elements x = (x(i)) and y = (y(i)) of Ẽ, define their sum and product by

(x + y)(i) = limj→∞(x(i+j) + y(i+j))p
j
and (xy)(i) = x(i)y(i). Let ϵ = (ϵ(n)) denote

an element of Ẽ such that ϵ(0) = 1 and ϵ(1) ̸= 1. Then, Ẽ is a perfect field of
characteristic p > 0 and is the completion of an algebraic closure of k((ϵ− 1)) for
the valuation defined by vE(x) = vp(x

(0)) where vp denotes the p-adic valuation of
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Cp normalized by vp(p) = 1. The field Ẽ is equipped with an action of a Frobenius
σ and a continuous action of the Galois group GK = Gal(K/K) with respect to

the topology defined by the valuation vE. Define Ẽ+ to be the ring of integers for

this valuation. Put Ã+ = W (Ẽ+) and B̃+ = Ã+[1/p] = {
∑

k≫−∞ pk[xk] | xk ∈
Ẽ+} where [∗] denotes the Teichmüller lift of ∗ ∈ Ẽ+. This ring B̃+ is equipped
with a surjective homomorphism

θ : B̃+ ↠ Cp :
∑

pk[xk] 7→
∑

pkx
(0)
k .

Let p̃ denote (p(n)) ∈ Ẽ+ such that p(0) = p. Then, Ker (θ) is the principal ideal
generated by ω = [p̃] − p . The ring B+

dR,K is defined to be the Ker (θ)-adic

completion of B̃+

B+
dR,K = lim←−n≥0B̃+/(Ker (θ)n).

This is a discrete valuation ring and t = log([ϵ]) which converges in B+
dR,K is a

generator of the maximal ideal. Put BdR,K = B+
dR,K [1/t]. The ring BdR,K becomes

a field and is equipped with an action of the Galois group GK and a filtration de-
fined by FiliBdR,K = tiB+

dR,K (i ∈ Z). Then, (BdR,K)
GK is canonically isomorphic

to K. Thus, for a p-adic representation V of GK , DdR,K(V ) = (BdR,K ⊗Qp V )GK

is naturally a K-vector space. We say that a p-adic representation V of GK is a
de Rham representation of GK if we have

dimQpV = dimKDdR,K(V ) (we always have dimQpV ≥ dimKDdR,K(V )).

Let θ : Ã+ → OCp be the natural homomorphism where OCp denotes the
ring of integers of Cp. Define the ring Acris,K to be the p-adic completion of
the PD-envelope of Ker (θ) compatible with the canonical PD-envelope over the
ideal generated by p. Put B+

cris,K = Acris,K [1/p] and Bcris,K = B+
cris,K [1/t]. These

rings are K0-algebras endowed with an action of GK and an action of Frobenius φ
which commutes with the action of GK . Furthermore, since we have the inclusion
K ⊗K0 Bcris,K ↪→ BdR,K , the ring K ⊗K0 Bcris,K is endowed with the filtration
induced by that of BdR,K . Then, (Bcris,K)

GK is canonically isomorphic to K0.
Thus, for a p-adic representation V of GK , Dcris,K(V ) = (Bcris,K ⊗Qp V )GK is
naturally a K0-vector space endowed with a Frobenius operator and a filtration
after extending the scalars to K. We say that a p-adic representation V of GK

is a crystalline representation of GK if we have

dimQpV = dimK0Dcris,K(V ) (we always have dimQpV ≥ dimK0Dcris,K(V )).

Furthermore, we say that a p-adic representation V of GK is a potentially crys-
talline representation of GK if there exists a finite field extension L/K in K such
that V is a crystalline representation of GL.

Fix a prime element ℘ of OK (the ring of integers of K) and an element s =

(s(n)) ∈ Ẽ+ such that s(0) = ℘. Then, the series log(s℘−1) converges to an element
us in B+

dR,K and the subring Bcris,K [us] of BdR,K depends only on the choice of ℘.
We denote this ring by Bst,K . Since we have the inclusion K⊗K0 Bst,K ↪→ BdR,K ,
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the ring K⊗K0 Bst,K is endowed with the action of GK and the filtration induced
by that of BdR,K . The element us is transcendental over Bcris,K and we extend
the Frobenius φ on Bcris,K to Bst,K by putting φ(us) = pus. Furthermore, define
the Bcris,K-derivation N : Bst,K → Bst,K by N(us) = −1. It is easy to verify
Nφ = pφN . As in the case of Bcris,K , we have (Bst,K)

GK = K0. Thus, for a
p-adic representation V of GK , Dst,K(V ) = (Bst,K ⊗Qp V )GK is naturally a K0-
vector space endowed with a Frobenius operator and a filtration after extending
the scalars to K. We say that a p-adic representation V of GK is a semi-stable
representation of GK if we have

dimQpV = dimK0Dst,K(V ) (we always have dimQpV ≥ dimK0Dst,K(V )).

Furthermore, we say that a p-adic representation V of GK is a potentially semi-
stable representation of GK if there exists a finite field extension L/K in K such
that V is a semi-stable representation of GL.

2.2. Crystalline and semi-stable representations in the imperfect residue
field case. Let K be a complete discrete valuation field of characteristic 0 with
residue field k of characteristic p > 0 such that [k : kp] = pe < ∞. Here, we do
not assume that the residue field k is perfect. Choose an algebraic closure K of
K and put GK = Gal(K/K). As in Introduction, fix a lift (bi)1≤i≤e of a p-basis

of k in OK (the ring of integers of K) and for each m ≥ 1, fix a pm-th root b
1/pm

i

of bi in K satisfying (b
1/pm+1

i )p = b
1/pm

i . Put

K(pf) = ∪m≥0K(b
1/pm

i , 1 ≤ i ≤ e) and Kpf = p-adic completion of K(pf).

These fields depend on the choice of a lift of a p-basis of k in OK . Let k
pf denote

the perfect residue field of Kpf and put Kpf
0 = Frac(W (kpf)). Define K0 to be

K0 = K ∩ Kpf
0 . Then, K0 has the residue field k and the extension K/K0 is

finite. If k is perfect (that is e = 0), the field K0 coincides with Kpf
0 . Further-

more, since K0 is a complete p-ring, it is isomorphic to the field Frac(W (k)) and
thus is endowed with an action of Frobenius σ. Since K(pf) is a Henselian dis-
crete valuation field, we have an isomorphism GKpf = Gal(Kpf/Kpf) ≃ GK(pf) =

Gal(K/K(pf)) (⊂ GK) where we choose an algebraic closureKpf ofKpf containing
K. With this isomorphism, we identify GKpf with a subgroup of GK . We have a
bijective map from the set of finite extensions of K(pf) contained in K to the set
of finite extensions of Kpf contained in Kpf defined by L→ LKpf. Furthermore,
LKpf is the p-adic completion of L. Hence, we have an isomorphism of rings

OK/p
nOK ≃ O

Kpf/p
nO

Kpf

where OK and O
Kpf denote the rings of integers of K and Kpf. Thus, the p-adic

completion of K is isomorphic to the p-adic completion of Kpf, which we will

write Cp. As in Subsection 2.1, construct the rings Ẽ+ and Ã+ = W (Ẽ+) from

this Cp. Put OK0 = OK ∩ W (kpf). Let α : OK ⊗OK0
Ã+ ↠ OK/pOK be the

natural surjection and define Ã+
(K) to be Ã+

(K) = lim←−n≥0(OK ⊗OK0
Ã+)/(Ker (α))n.
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Let θK : Ã+
(K)⊗Zp Qp ↠ Cp be the natural extension of θ : Ã+[1/p] ↠ Cp. Define

B+
dR,K to be the Ker (θK)-adic completion of Ã+

(K) ⊗Zp Qp

B+
dR,K = lim←−n≥0(Ã+

(K) ⊗Zp Qp)/(Ker (θK)
n).

This is a K-algebra equipped with an action of the Galois group GK . Let b̃i
denote (b

(n)
i ) ∈ Ẽ+ such that b

(0)
i = bi and then the series which defines log([b̃i]/bi)

converges to an element ti in B+
dR,K . Then, the ring B+

dR,K becomes a local ring

with the maximal ideal mdR = (t, t1, . . . , te). Define a filtration on B+
dR,K by

filiB+
dR,K = mi

dR. Then, the homomorphism

f : B+
dR,Kpf [[t1, . . . , te]]→ B+

dR,K

is an isomorphism of filtered algebras (see [Br2], Proposition 2.9). From this
isomorphism, it follows that

i : B+
dR,Kpf ↪→ B+

dR,K and p : B+
dR,K ↠ B+

dR,Kpf : ti 7→ 0

are GKpf-equivariant homomorphisms and the composition

p ◦ i : B+
dR,Kpf ↪→ B+

dR,K ↠ B+
dR,Kpf

is an identity. Put BdR,K = B+
dR,K [1/t]. Then, K is canonically embedded in

BdR,K and we have a canonical isomorphism (BdR,K)
GK = K. Thus, for a p-adic

representation V of GK , DdR,K(V ) = (BdR,K ⊗Qp V )GK is naturally a K-vector
space. We say that a p-adic representation V of GK is a de Rham representation
of GK if we have

dimQpV = dimKDdR,K(V ) (we always have dimQpV ≥ dimKDdR,K(V )).

Let θK0 : OK0 ⊗Z Ã+ → OCp denote the natural extension of θ : Ã+ → OCp

where OK0 (resp. OCp) denotes the ring of integers ofK0 (resp. Cp). Define Acris,K

to be the p-adic completion of the PD-envelope of Ker (θK0) compatible with the
canonical PD-envelope over the ideal generated by p. Put B+

cris,K = Acris,K [1/p]

and Bcris,K = B+
cris,K [1/t]. The ring Bcris,K is the K0-algebra endowed with an

action of GK and an action of Frobenius φ which commutes with the action of
GK . Furthermore, since we have the inclusion K ⊗K0 Bcris,K ↪→ BdR,K (see [Br2,
Proposition 2.47.]), the ring K ⊗K0 Bcris,K is endowed with the filtration induced

by that of BdR,K . For 1 ≤ i ≤ e, put ri = [̃bi]− bi ∈ OK0 ⊗Z Ã+. Then, we have
ri ∈ Ker (θK0) for 1 ≤ i ≤ e and an isomorphism

f : p-adic completion of Acris,Kpf⟨r1, . . . , re⟩ → Acris,K

where ⟨∗⟩ denotes PD-polynomial (see [Br2, Proposition 2.39.]). From this iso-
morphism, it follows that

i : Bcris,Kpf ↪→ Bcris,K and p : Bcris,K ↠ Bcris,Kpf : ri 7→ 0

are GKpf-equivariant homomorphisms and the composition

p ◦ i : Bcris,Kpf ↪→ Bcris,K ↠ Bcris,Kpf
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is identity. By [Br2, Proposition 2.50.], we have a canonical isomorphism (Bcris,K)
GK

= K0. Thus, for a p-adic representation V of GK , Dcris,K(V ) = (Bcris,K⊗Qp V )GK

is naturally a K0-vector space endowed with a Frobenius operator and a filtration
after extending the scalars to K. We say that a p-adic representation V of GK

is a crystalline representation of GK if we have

dimQpV = dimK0Dcris,K(V ).

Note that, for a p-adic representation V of GK , we always have dimQpV ≥
dimK0Dcris,K(V ) by [Br2, Proposition 3.22.]. Furthermore, we say that a p-adic
representation V of GK is a potentially crystalline representation of GK if there
exists a finite field extension L/K in K such that V is a crystalline representation
of GL.

Fix a prime element ℘ of OK and an element s = (s(n)) ∈ Ẽ+ such that s(0) = ℘.
Then, the series log(s℘−1) converges to an element us in B+

dR,K and the subring
Bcris,K [us] of BdR,K depends only on the choice of ℘. We denote this ring by
Bst,K . We can prove that the element us is transcendental over Bcris,K (see [F1,
4.3.]). Since we have the inclusion K⊗K0 Bst,K ↪→ BdR,K , the ring K⊗K0 Bst,K is
endowed with the action of GK and the filtration induced by that of BdR,K . We
extend the Frobenius φ on Bcris,K to Bst,K by putting φ(us) = pus. Furthermore,
define the Bcris,K-derivation N : Bst,K → Bst,K by N(us) = −1. It is easy to
verify Nφ = pφN . As in the case of Acris,K , we have an isomorphism

f : (p-adic completion of Acris,Kpf⟨r1, . . . , re⟩)[1/p, us, 1/t]→ Bst,K

where ⟨∗⟩ denotes PD-polynomial. From this isomorphism, it follows that

i : Bst,Kpf ↪→ Bst,K and p : Bst,K ↠ Bst,Kpf : ri 7→ 0

are GKpf-equivariant homomorphisms and the composition

p ◦ i : Bst,Kpf ↪→ Bst,K ↠ Bst,Kpf

is identity. By imitating the result [Br2, Proposition 2.50.], we can show that we
have a canonical isomorphism (Bst,K)

GK = K0 as follows.

Lemma 2.1. We have (FracBst,K)
GK = K0.

Proof. From the mapK⊗K0Bst,K ↪→ BdR,K , we obtain a GK-equivariant injection
K ⊗K0 FracBst,K ↪→ FracBdR,K by localization. It follows that we have an injec-
tion K ⊗K0 (FracBst,K)

GK ↪→ (FracBdR,K)
GK . Since we have (FracBdR,K)

GK =
K, we get dimK0(FracBst,K )GK ≤ 1 and thus (FracBst,K)

GK = K0. □

Proposition 2.2. We have (Bst,K)
GK = K0.

Proof. We have K0 ⊂ (Bst,K)
GK ⊂ (FracBst,K)

GK = K0. □

Thus, for a p-adic representation V of GK , Dst,K(V ) = (Bst,K ⊗Qp V )GK is
naturally a K0-vector space endowed with a Frobenius operator and a filtration
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after extending the scalars to K. We say that a p-adic representation V of GK

is a semi-stable representation of GK if we have

dimQpV = dimK0Dst,K(V ).

Since (Bst,K)
GK is the field K0 (Proposition 2.2.) and we have (FracBst,K)

GK =
K0 (Lemma 2.1.), it follows from [Br2, Proposition 3.3.] that we always have
dimQpV ≥ dimK0Dst,K(V ). Furthermore, we say that a p-adic representation V
of GK is a potentially semi-stable representation of GK if there exists a finite field
extension L/K in K such that V is a semi-stable representation of GL.

3. The theory of p-adic differential modules

In this section, we shall review the theory of p-adic differential modules which
plays an important role in this article. First, let us fix the notations. Let K
be a complete discrete valuation field of characteristic 0 with residue field k of
characteristic p > 0 such that [k : kp] = pe <∞ and V be a p-adic representation

of GK . Define K(pf) and Kpf as in Introduction and Subsection 2.2. Put K
(pf)
∞ =

∪m≥0K
(pf)(ζpm) (resp. Kpf

∞ = ∪m≥0K
pf(ζpm)) where ζpm denotes a primitive pm-

th root of unity in K (resp. Kpf) such that (ζpm+1)p = ζpm . Let K̂pf
∞ denote the

p-adic completion of Kpf
∞. These fields K

(pf)
∞ , Kpf

∞ and K̂pf
∞ depend on the choice

of a lift of a p-basis of k in OK . Then, we have the following inclusions

K(pf)
∞ ⊂ Kpf

∞ ⊂ K̂pf
∞.

Let H denote the kernel of the cyclotomic character χ : GKpf → Z∗
p. Then,

the Galois group H is isomorphic to the subgroup Gal(K/K
(pf)
∞ ) of GK . Define

ΓK = GK/H. Let Γ0 denote the subgroup Gal(K
(pf)
∞ /K(pf)) (≃ GKpf/H) of ΓK .

Let Γi (1 ≤ i ≤ e) be the subgroup of ΓK such that actions of βi ∈ Γi (1 ≤ i ≤ e)

satisfy βi(ζpm) = ζpm and βi(b
1/pm

j ) = b
1/pm

j (i ̸= j) and define the homomorphism

ci : Γi → Zp such that we have βi(b
1/pm

i ) = b
1/pm

i ζ
ci(βi)
pm . Then, the homomorphism

ci defines an isomorphism Γi ≃ Zp of profinite groups. With this, we can see that
there exist isomorphisms of profinite groups

ΓK ≃ Γ0 ⋉ (⊕e
i=1Γi) ≃ Γ0 ⋉ Z⊕e

p .

3.1. Review of the classical theory. In this subsection, we will give the def-
initions of p-adic differential modules DSen(V ), DBri(V ), D+

dif(V ) and D+
e-dif(V )

which are obtained by Sen, Brinon, Fontaine and Andreatta-Brinon ([S], [Br1],
[F2], [A-B]). The modules DSen(V ) and D+

dif(V ) are obtained when V is a p-adic
representation of Gal(L/L) where L is a complete discrete valuation field of char-
acteristic 0 with perfect residue field of characteristic p > 0 and we choose an
algebraic closure L of L. However, for simplicity, we will state the results in the
case L = Kpf.
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3.1.1. The module DSen(V ). In the article [S], Sen shows that, for a p-adic repre-

sentation V of GKpf , the K̂pf
∞-vector space (Cp⊗QpV )H has dimension d = dimQpV

and the union of the finite dimensional Kpf
∞-subspaces of (Cp ⊗Qp V )H stable

under Γ0 (≃ GKpf/H) is a Kpf
∞-vector space of dimension d stable under Γ0

(called DSen(V )). We have Cp ⊗Kpf
∞
DSen(V ) = Cp ⊗Qp V and the natural map

K̂pf
∞ ⊗Kpf

∞
DSen(V ) → (Cp ⊗Qp V )H is an isomorphism. Furthermore, if γ ∈ Γ0 is

close enough to 1, then the series of operators on DSen(V )

log(γ)

log(χ(γ))
= − 1

log(χ(γ))

∑
k≥1

(1− γ)k

k

converges to a Kpf
∞-linear operator ∇(0) : DSen(V ) → DSen(V ) and does not

depend on the choice of γ.

3.1.2. The module DBri(V ). In the article [Br1], Brinon generalizes Sen’s work
above. For a p-adic representation V of GK , he shows that the union of the finite

dimensional K
(pf)
∞ -subspaces of (Cp ⊗Qp V )H stable under ΓK is a K

(pf)
∞ -vector

space of dimension d stable under ΓK (we call it DBri(V )). We have Cp ⊗K
(pf)
∞

DBri(V ) = Cp ⊗Qp V and the natural map K̂pf
∞ ⊗K

(pf)
∞

DBri(V ) → (Cp ⊗Qp V )H

is an isomorphism. As in the case of DSen(V ), the K
(pf)
∞ -vector space DBri(V ) is

endowed with the action of the K
(pf)
∞ -linear operator ∇(0) = log(γ)

log(χ(γ))
if γ ∈ Γ0 is

close enough to 1. In addition to this operator ∇(0), if βi ∈ Γi is close enough to
1, then the series of operators on DBri(V )

log(βi)

ci(βi)
= − 1

ci(βi)

∑
k≥1

(1− βi)
k

k

converges to a K
(pf)
∞ -linear operator ∇(i) : DBri(V ) → DBri(V ) and does not

depend on the choice of βi.

3.1.3. The module D+
dif(V ). In the article [F2], by using Sen’s theory, Fontaine

shows that, for a p-adic representation V ofGKpf , the union ofKpf
∞[[t]]-submodules

of finite type of (B+
dR,Kpf ⊗Qp V )H stable under Γ0 (≃ GKpf/H) is a free Kpf

∞[[t]]-

module of rank d stable under Γ0 (called D+
dif(V )). We have B+

dR,Kpf ⊗Kpf
∞[[t]]

D+
dif(V ) = B+

dR,Kpf ⊗Qp V and the natural map (B+
dR,Kpf)

H ⊗Kpf
∞[[t]] D

+
dif(V ) →

(B+
dR,Kpf ⊗Qp V )H is an isomorphism. Furthermore, if γ ∈ Γ0 is close enough to

1, then the series of operators on D+
dif(V )

log(γ)

log(χ(γ))
= − 1

log(χ(γ))

∑
k≥1

(1− γ)k

k

converges to a Kpf
∞-linear derivation ∇(0) : D+

dif(V ) → D+
dif(V ) and does not

depend on the choice of γ. Note that this D+
dif(V ) is a little different from one

which the author used by the same symbol in the article [M].
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3.1.4. The module D+
e-dif(V ). In the article [A-B], Andreatta and Brinon gener-

alize Fontaine’s work above. For a p-adic representation V of GK , they show

that the union of K
(pf)
∞ [[t, t1, . . . , te]]-submodules of finite type of (B+

dR,K ⊗Qp V )H

stable under ΓK is a free K
(pf)
∞ [[t, t1, . . . , te]]-module of rank d stable under ΓK

(we call it D+
e-dif(V )). We have B+

dR,K ⊗K
(pf)
∞ [[t,t1,...,te]]

D+
e-dif(V ) = B+

dR,K ⊗Qp V and

the natural map (B+
dR,K)

H ⊗
K

(pf)
∞ [[t,t1,...,te]]

D+
e-dif(V ) → (B+

dR,K ⊗Qp V )H is an iso-

morphism. As in the case of D+
dif(V ), the K

(pf)
∞ [[t, t1, . . . , te]]-module D+

e-dif(V ) is

endowed with the K
(pf)
∞ -linear derivation ∇(0) = log(γ)

log(χ(γ))
if γ ∈ Γ0 is close enough

to 1. In addition to this operator ∇(0), if βi ∈ Γi is close enough to 1, then the
series of operators on D+

e-dif(V )

log(βi)

ci(βi)
= − 1

ci(βi)

∑
k≥1

(1− βi)
k

k

converges to a K
(pf)
∞ -linear derivation ∇(i) : D+

e-dif(V ) → D+
e-dif(V ) and does not

depend on the choice of βi.

3.1.5. Some properties of differential operators. We shall describe the actions of
operators {∇(i)}ei=0 on DBri(V ) and D+

e-dif(V ). First, by a standard argument, we
can show that, if x ∈ DBri(V ) (resp. D+

e-dif(V )), we have

∇(0)(x) = limγ→1
γ(x)− x

χ(γ)− 1
and ∇(i)(x) = limβi→1

βi(x)− x

ci(βi)
.

With this, we can describe the actions of K
(pf)
∞ -linear derivations {∇(i)}ei=0 on the

ring K
(pf)
∞ [[t, t1, . . . , te]] = De-dif(Qp) (here Qp is equipped with the structure of

p-adic representations of GK induced by the trivial action of GK) as

∇(0) = t
d

dt
and ∇(i) = t

d

dti
(1 ≤ i ≤ e).

We extend naturally actions of K
(pf)
∞ -linear derivations {∇(i)}ei=0 on K

(pf)
∞ [[t, t1,

. . . , te]] to K
(pf)
∞ [[t, t1, . . . , te]][t

−1] (⊂ BdR,K) by putting ∇(0)(t−1) = −t−1 and
∇(i)(t−1) = 0 (1 ≤ i ≤ e). Furthermore, the bracket [ , ] of operators {∇(i)}ei=0

on DBri(V ) (resp. D+
e-dif(V )) satisfies (see [M, Proposition 3.3.])

[∇(0),∇(i)] = ∇(i) (i ̸= 0) and [∇(i),∇(j)] = 0 (i, j ̸= 0).

3.2. Construction of special elements. In this subsection, we shall introduce
some special elements which behave well under the action of p-adic differential
operators.
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3.2.1. A special basis of D+
e-dif(V ). We shall construct a special basis of D+

e-dif(V )

over K
(pf)
∞ [[t, t1, . . . , te]] which bridges the gap between D+

dif(V ) and D+
e-dif(V ) and

behaves well under the action of ∇(0). Note that there is no GK-equivariant
injection K ↪→ B+

dR,Kpf : we will sometimes write L+
dif instead of the misleading

Kpf
∞[[t]]. First, let us recall the following result.

Proposition 3.1. [M, Proposition 4.8.] Let V be a p-adic representation of
GK. If V is a de Rham representation of GKpf, there exists a ∇(0)-equivariant

isomorphism of K
(pf)
∞ [[t, t1, . . . , te]]-modules

D+
e-dif(V ) ≃∇(0) ⊕d

j=1K
(pf)
∞ [[t, t1, . . . , te]](nj) (d = dimQpV, nj ∈ Z).

Next, let us define the Kpf
∞[[t, t1, . . . , te]]-submodule X of (B+

dR,K ⊗Qp V )H by

X = Kpf
∞[[t, t1, . . . , te]]⊗K

(pf)
∞ [[t,t1,...,te]]

D+
e-dif(V ). If we putD

+,(r)
e-dif (V ) = D+

e-dif(V )/(t,

t1, . . . , te)
rD+

e-dif(V ), we have the inclusionKpf
∞⊗K

(pf)
∞

D
+,(r)
e-dif (V ) ↪→ L+

dif[[t1, . . . , te]]/

(t, t1, . . . , te)
r ⊗L+

dif
D+

dif(V ) by the theory of Sen. Since both sides have the same

dimension over Kpf
∞, the inclusion above actually gives an isomorphism. By tak-

ing the projective limit with respect to r, we obtain a Γ0-equivariant isomorphism
X ≃ L+

dif[[t1, . . . , te]]⊗L+
dif

D+
dif(V ).

Proposition 3.2. Let V be a p-adic representation of GK. If V is a de Rham
representation of GKpf, there exists a basis {fj}

d
j=1 of D+

dif(V ) over L+
dif such that

(1) {1⊗fj}dj=1 forms a basis of D+
e-dif(V ) (⊂ X = L+

dif[[t1, . . . , te]]⊗L+
dif
D+

dif(V ))

over K
(pf)
∞ [[t, t1, . . . , te]],

(2) the action of ∇(0) on {1 ⊗ fj}
d
j=1 is given by ∇(0)(1 ⊗ fj) = nj(1 ⊗ fj)

where the integers nj are those of Proposition 3.1.

Proof. Let {Gj}
d
j=1 denote a basis of D+

dif(V ) over Kpf
∞[[t]]. Since D+

e-dif(V ) is a

submodule of X = L+
dif[[t1, . . . , te]] ⊗L+

dif
D+

dif(V ), any element of D+
e-dif(V ) can

be written as linear combinations of {1 ⊗ Gj}
d
j=1 over L+

dif[[t1, . . . , te]]. On the

other hand, fix a basis {Fj}
d
j=1 of D

+
e-dif(V ) over K

(pf)
∞ [[t, t1, . . . , te]] that gives the

isomorphism of Proposition 3.1, that is, ∇(0)(Fj) = njFj with nj ∈ Z. Then, we
can write

1⊗ Fj =
∑

(m1,...,me)∈Ne

tm1
1 · · · tme

e ⊗ (
d∑

k=1

a
(m1,...,me)
jk Gk)(3.1)

where the a
(m1,...,me)
jk are elements of L+

dif. Put fj =
∑d

k=1 a
(0,...,0)
jk Gk ∈ D+

dif(V ).

Then, it follows that we have ∇(0)(fj) = njfj. On the other hand, we have

{fj = Fj}
d
j=1 in DSen(V ) where − denotes the reduction modulo (t, t1, . . . , te)X.

Since {Fj}
d
j=1 forms a basis of DSen(V ) over Kpf

∞, the lift {1 ⊗ fj}
d
j=1 of {fj =

Fj}
d
j=1 in X forms a basis of X over Kpf

∞[[t, t1, . . . , te]]. Furthermore, since
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{fj}
d
j=1 are elements of D+

dif(V ), it follows that {fj}
d
j=1 also forms a basis of

D+
dif(V ) over Kpf

∞[[t]]. Thus, it remains to show that {1 ⊗ fj}
d
j=1 forms a ba-

sis of D+
e-dif(V ) over K

(pf)
∞ [[t, t1, . . . , te]]. Put Xr = X/(t, t1, . . . , te)

rX. Let

Yr denote the K
(pf)
∞ [[t, t1, . . . , te]]-submodule of Xr generated by the finite set

{
∑d

k=1 a
(m1,...,me)
jk Gk}j,m1+···+me<r ⊂ (B+

dR,Kpf ⊗Qp V )H . Then, it follows that this

finitely generated K
(pf)
∞ [[t, t1, . . . , te]]-module Yr is stable under the action of ΓK

by (3.1) and thus is contained in D
+,(r)
e-dif (V ) by definition. On the other hand,

Yr contains the elements {1⊗ fj}
d
j=1 which are linearly independent over Kpf

∞[[t,

t1, . . . , te]]/(t, t1, . . . , te)
r. Thus, both of Yr and D

+,(r)
e-dif (V ) have the same dimen-

sion over K
(pf)
∞ and we get the equality Yr = D

+,(r)
e-dif (V ). Therefore, by taking the

projective limit with respect to r, we conclude that {1⊗ fj}
d
j=1 (⊂ lim←−r

Yr) forms

a basis of D+
e-dif(V ) over K

(pf)
∞ [[t, t1, . . . , te]]. □

Lemma 3.3. By restricting ∇(i) : D+
e-dif(V ) → D+

e-dif(V ) (0 ≤ i ≤ e), we obtain
∇(i) : D+

e-dif(V )∩ (B+
dR,Kpf⊗Qp V )H → D+

e-dif(V )∩ (B+
dR,Kpf⊗Qp V )H in (B+

dR,K⊗Qp

V )H .

Proof. For simplicity, put L+
dR = (B+

dR,Kpf)
H , L+

dR(V ) = (B+
dR,Kpf ⊗Qp V )H and

Z = (B+
dR,K⊗QpV )H . LetmdR denote the maximal ideal (t, t1, . . . , te) of (B

+
dR,K)

H .
Then, we have

Z = lim←− rZ/m
r
dRZ ⊃ L+

dR(V ) = lim←− rL
+
dR(V )/(mr

dRZ ∩ L+
dR(V ))

∪
D+

e-dif(V ) = lim←− rD
+
e-dif(V )/(mr

dRZ ∩D+
e-dif(V )).

Define W as the L+
dR∩K

(pf)
∞ [[t, t1, . . . , te]]-submodule of Z generated by L+

dR(V )∩
D+

e-dif(V ). If we put Ŵ = lim←−r
Wr where Wr denotes W/(mr

dRZ ∩W ), we have

L+
dR(V ) ⊃ Ŵ and D+

e-dif(V ) ⊃ Ŵ . Thus, we obtain Ŵ = W by definition.
Therefore, it suffices to show that Wr is stable under the actions of {∇(i)}ei=0.

Fix a basis {gj}
h
j=1 of D

+
e-dif(V )/(mr

dRZ∩D+
e-dif(V )) over K

(pf)
∞ . Then, there exists

a finite field extension L/K in K
(pf)
∞ such that ⊕h

j=1L · gj is stable by the action

of ΓK = GK/H = Gal(K
(pf)
∞ /K). Thus, there exists an open subgroup Γ′

i of Γi

such that, for all γ ∈ Γ′
0 (resp. βi ∈ Γ′

i), the action of γ (resp. βi) on ⊕h
j=1L · gj

is L-linear. Then, the series

log(γ) = −
∞∑
k=1

(γ − 1)k

k
(resp. log(βi) = −

∞∑
k=1

(βi − 1)k

k
)

converges to an endomorphism of ⊕h
j=1L · gj. These actions on ⊕h

j=1L · gj can be

extended to those on D+
e-dif(V )/(mr

dRZ ∩D+
e-dif(V )) by K

(pf)
∞ -linearity. Since Wr is

contained in D+
e-dif(V )/(mr

dRZ ∩D+
e-dif(V )) and stable under the action of ΓK , it

follows that Wr is equipped with actions of ∇(0) = log(γ)
log(χ(γ))

and ∇(i) = log(βi)
ci(βi)

. □
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3.2.2. D̃cris,Kpf(V ) and D̃st,Kpf(V ). In this subsection, for simplicity, we shall de-

note B̃cris,Kpf = (Bcris,Kpf)H and D̃cris,Kpf(V ) = (Bcris,Kpf ⊗Qp V )H (resp. B̃st,Kpf =

(Bst,Kpf)H and D̃st,Kpf(V ) = (Bst,Kpf ⊗Qp V )H).

Proposition 3.4. (cf. Proposition 3.2.) Let V be a p-adic representation of
GK. If V is a crystalline (resp. semi-stable) representation of GKpf, there exists

a basis {gj}
d
j=1 of D̃cris,Kpf(V ) over B̃cris,Kpf (resp. D̃st,Kpf(V ) over B̃st,Kpf) such

that

(1) {gj}
d
j=1 forms a basis of D+

e-dif(V )[1/t] over K
(pf)
∞ [[t, t1, . . . , te]][1/t],

(2) {gj}
d
j=1 is contained in Ker (∇(0)) (⊂ D+

e-dif(V )[1/t]).

Proof. Since the semi-stable representation case is similar, we shall consider only
the crystalline representation case. Since V is also a de Rham representation
of GKpf , by Proposition 3.2, there exists a basis {fj}

d
j=1 of D+

dif(V ) over Kpf
∞[[t]]

such that (1) {1⊗fj}dj=1 forms a basis of D+
e-dif(V ) over K

(pf)
∞ [[t, t1, . . . , te]] and (2)

∇(0)(1⊗fj) = nj(1⊗fj) with nj ∈ Z. Then, since the action of∇(0) on {fjt
−nj}dj=1

is trivial and {fjt
−nj}dj=1 is contained in D+

dif(V )[1/t] ⊂ (BdR,Kpf ⊗ V )H , there

exists a finite field extension Lpf/Kpf in Kpf
∞ such that {fjt

−nj}dj=1 forms a basis

of DdR,Lpf(V ) over Lpf. If K = K0(α) and Lpf = Kpf(β) for some β = ζpn ∈ Kpf
∞,

there exists an element a ∈ K
(pf)
∞ such that K0(α, β) = K0(a). Then, we have

Lpf = Kpf
0 (α, β) = Kpf

0 (a) = Lpf
0 (a). Since V is also a crystalline representation

of GLpf , we have DdR,Lpf(V ) = Lpf
0 (a)⊗Lpf

0
Dcris,Lpf(V ). Thus, we can write

fjt
−nj =

δ−1∑
k=0

ak ⊗ gjk (gjk ∈ Dcris,Lpf(V ), δ = [Lpf
0 (a) : L

pf
0 ]).(3.2)

We can extract a basis of Dcris,Lpf(V ) over Lpf
0 from the family {gjk}j,k: de-

note it by {gj}
d
j=1. Since we have Bcris,Kpf ⊗Lpf

0
Dcris,Lpf(V ) ≃ Bcris,Kpf ⊗Qp V ,

by taking the invariant part by H, it follows that {gj}
d
j=1 forms a basis of

D̃cris,Kpf(V ) over B̃cris,Kpf . Furthermore, by (3.2), the action of ∇(0) on {gj}
d
j=1

is trivial. Thus, it remains to show that {gj}
d
j=1 forms a basis of D+

e-dif(V )[1/t]

over K
(pf)
∞ [[t, t1, . . . , te]][1/t]. First, let Zr denote the union of K

(pf)
∞ [[t, t1, . . . , te]]-

submodules of finite type of (B+
dR,K ⊗Qp V )H/(t, t1, . . . , te)

r(B+
dR,K ⊗Qp V )H that

are stable under the action of an open subgroup Γ of ΓK . Since we have the inclu-

sion D
+,(r)
e-dif (V ) ↪→ Zr by definition and both sides have the same dimension over

K
(pf)
∞ , we have D

+,(r)
e-dif (V ) = Zr. Thus, by taking the projective limit with respect

to r, we obtain D+
e-dif(V ) = lim←−r

Zr. Choose integers {mjk}1≤j≤d, 0≤k≤δ−1 ⊂ Z
such that we have

{tmjkak ⊗ gjk}1≤j≤d, 0≤k≤δ−1 ⊂ (B+
dR,K ⊗Qp V )H .
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Let Z denote the K
(pf)
∞ [[t, t1, . . . , te]]-submodule of (B+

dR,K ⊗Qp V )H generated by

the finite set {tmjkak ⊗ gjk}1≤j≤d, 0≤k≤δ−1. Take an open subgroup Γ of ΓK such

that the action of Γ on the finite set {ak}δ−1
k=0 is trivial. Then it follows from (3.2)

that this finitely generatedK
(pf)
∞ [[t, t1, . . . , te]]-module Z is stable under the action

of Γ and thus is contained in D+
e-dif(V ) by the preceding argument. In particular,

it follows that the elements {gj}
d
j=1 are contained in D+

e-dif(V )[1/t]. Furthermore,

since {gj}
d
j=1 forms a basis of BdR,K⊗Qp V over BdR,K , it is, in particular, linearly

independent over BdR,K in BdR,K ⊗Qp V . Take mj ∈ Z such that we have

{g′j = tmjgj}
d
j=1 ⊂ D+

e-dif(V ).

Let L(V ) be the submodule of B+
dR,K ⊗Qp V generated by {g′j}

d
j=1 over B+

dR,K

and let D(V ) denote the union of K
(pf)
∞ [[t, t1, . . . , te]]-submodules of finite type

of L(V )H stable under ΓK . Since {g′j}
d
j=1(⊂ D(V )) forms a basis of L(V ) over

B+
dR,K , it follows that {g

′
j}

d
j=1 also forms a basis of D(V ) over K

(pf)
∞ [[t, t1, . . . , te]]

(see [A-B, Lemma 5.10]). For any element x ∈ D+
e-dif(V )[1/t], one can see that

there exists an integer m ∈ Z such that we have tmx ∈ D(V ). Thus, tmx can be

written as linear combinations of {g′j}
d
j=1 over K

(pf)
∞ [[t, t1, . . . , te]]. It follows that

{gj}
d
j=1 forms a basis of D+

e-dif(V )[1/t] over K
(pf)
∞ [[t, t1, . . . , te]][1/t]. □

From now on, we shall keep the notation and assumptions of Proposition 3.4.
The following result is proved in Proposition 3.5 and Corollary 3.6 of [M].

Proposition 3.5. The action of {∇(i)}ei=1 on the basis {gj}
d
j=1 is given by (∇(1))k1

· · · (∇(e))ke(gj) = tk1+···+ke
∑d

l=1 cj,k,lgl where the cj,k,l (k = (k1, . . . , ke)) are ele-

ments of K
(pf)
∞ [[t, t1, . . . , te]] such that ∇(0)(cj,k,l) = 0.

Proposition 3.6. Let V be a p-adic representation of GK. If V is a crystalline
(resp. semi-stable) representation of GKpf, we have

(∇(1))k1 · · · (∇(e))ke(gj) ∈ D̃cris,Kpf(V ) (resp. ∈ D̃st,Kpf(V ))

for all (ki)1≤i≤e ∈ Ne and 1 ≤ j ≤ d.

Proof. Since the semi-stable representation case is similar, we shall consider only
the crystalline representation case. It is enough to prove that if g ∈ D+

e-dif(V )[1/t]

is such that g ∈ D̃cris,Kpf(V ) and ∇(0)(g) = 0, then (∇(1))k1 · · · (∇(e))ke(g) ∈
D̃cris,Kpf(V ) for all (ki)1≤i≤e ∈ Ne. Since the proof of the general case is exactly the

same (only with heavier notations), we just show that ∇(i)(g) ∈ D̃cris,Kpf(V ) for

1 ≤ i ≤ e. First, for r ∈ N>0 and h ∈ D+
e-dif(V ), there exists an open subgroup Γh,r

i

of Γi such that we have βi(h) = exp(ci(βi)∇(i))(h) mod (t, t1, . . . , te)
r D+

e-dif(V )

for all βi ∈ Γh,r
i (see [A-B] and [F2]). Thus, if we take M ∈ N such that tMg ∈

D+
e-dif(V ), we obtain

βi(t
Mg) = tMg +

(ci(βi))
1

1!
(∇(i))1(tMg) +

(ci(βi))
2

2!
(∇(i))2(tMg) + · · ·(3.3)
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mod (t, t1, . . . , te)
rD+

e-dif(V ) for all βi ∈ ΓtMg,r
i . Note that this series is a fi-

nite sum mod (t, t1, . . . , te)
rD+

e-dif(V ) by Proposition 3.5. Thus, there exists
L ∈ N such that we have (∇(i))L(tMg) ̸= 0 and (∇(i))L+1(tMg) = 0 mod
(t, t1, . . . , te)

rD+
e-dif(V ). On the other hand, since we have (∇(i))j(g) ∈ (BdR,Kpf⊗Qp

V )H by Lemma 3.3 and ∇(0)( 1
tj
(∇(i))j(g)) = 0 by Proposition 3.5, there exists a

finite field extension Mpf/Kpf in Kpf
∞ such that { 1

tj
(∇(i))j(g)}Lj=0 is contained in

DdR,Mpf(V ). Write Mpf = Mpf
0 (b). Then, since V is also a crystalline representa-

tion of GMpf , we have the equality DdR,Mpf(V ) = Mpf
0 (b)⊗Mpf

0
Dcris,Mpf(V ). Thus,

we can write
1

tj
(∇(i))j(g) =

∑
m,n

bm ⊗ aijmngn (aijmn ∈ B̃cris,Kpf).(3.4)

By (3.3) and (3.4), we obtain

βi(t
Mg) = tM

∑
m,n

bm ⊗ (
L∑

j=0

(ci(βi))
j

j!
aijmnt

j)gn
(
mod (t, t1, . . . , te)

r
)
.(3.5)

On the other hand, since D̃cris,Kpf(V ) is stable under the action of ΓtMg,r
i and

{bm}δ−1
m=0 (δ = [Mpf : Mpf

0 ]) is linearly independent over B̃cris,Kpf , the terms of the

RHS of (3.5) have to be 0 form ̸= 0. Then, form ̸= 0, we have
∑L

j=0
λj

j!
aijmnt

j = 0

for λ in an open subgroup of Zp: this implies that aijmn = 0 for m ̸= 0. In

particular, we obtain ∇(i)(g) ∈ D̃cris,Kpf(V ) (i ̸= 0) by (3.4). □

4. Proof of the main theorem

In this section, we will give proofs only in the crystalline representation case
since the semi-stable representation case is similar.

Proposition 4.1. We have the following implications.

(1) If V is a crystalline representation of GK, then it is a crystalline repre-
sentation of GKpf.

(2) If V is a semi-stable representation of GK, then it is a semi-stable repre-
sentation of GKpf.

Proof. Since V is a crystalline representation of GK , there exists a GK-equivariant
isomorphism of Bcris,K-modules

Bcris,K ⊗Qp V ≃ (Bcris,K)
d (d = dimQpV ).(4.1)

By tensoring (4.1) byBcris,Kpf overBcris,K (which is induced by theGKpf-equivariant
surjection p : Bcris,K ↠ Bcris,Kpf : ri 7→ 0), we obtain a GKpf-equivariant isomor-
phism of Bcris,Kpf-modules

Bcris,Kpf ⊗Qp V ≃ (Bcris,Kpf)d.
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This means that V is a crystalline representation of GKpf . □

Proof of Theorem 1.1. It remains to show that, if V is a p-adic representation of
GK whose restriction to GKpf is crystalline, then V is a potentially crystalline
representation of GK . Since V is a crystalline representation of GKpf , there

exists a basis {gj}
d
j=1 of D̃cris,Kpf(V ) over B̃cris,Kpf which satisfies the properties

in Proposition 3.4. From this {gj}
d
j=1, for all finite extension L/K in K, we shall

construct Lpf
0 -linearly independent elements {fj}

d
j=1 in Bcris,K ⊗Qp V such that

∇(i)(fj) = 0 (0 ≤ ∀i ≤ e and 1 ≤ ∀j ≤ d).

(A) Construction of {fj}
d
j=1 in Bcris,K ⊗Qp V .

By Propositions 3.5 and 3.6, we have (∇(1))k1 · · · (∇(e))ke(gj) = tk1+···+ke
∑d

l=1

cjklgl where the cjkl (k = (k1, . . . , ke)) are elements of B+
cris,Kpf such that ∇(0)(cjkl)

= 0. On the other hand, for N ∈ N, we obtain,

φN+1((∇(1))k1 · · · (∇(e))ke(gj)) = (pt)k1+···+ke

d∑
l=1

pN(k1+···+ke)φN+1(cjklgl)(4.2)

where the φN+1(cjkl) are elements of B+
cris,Kpf such that ∇(0)(φN+1(cjkl)) = 0.

Let Ui denote the matrix which represents the action of ∇(i)/t (1 ≤ i ≤ e) with
respect to the basis {gj}

d
j=1 and take N large enough such that we have pNUi ∈

Md(Acris,Kpf) for all 1 ≤ i ≤ e. On the other hand, by applying the same method

as in Proposition 3.6 to the entries of Ui, we have
∇(j)

t
(pNUi) ∈ Md(B̃cris,Kpf). Since

we have ∇(0)(∇
(j)

t
(pNUi)) = 0, this means that we obtain ∇(j)

t
(pNUi) ∈ Md(L

pf
0 )

for a finite extension L/K inK and, in particular, ∇(j)

t
(pNUi) ∈ Md(B

+
cris,Kpf) (1 ≤

i, j ≤ e). Furthermore, since∇(j) is the form t d
dtj

onK
(pf)
∞ [[t, t1, . . . , te]] and

∇(j)

t
=

d
dtj

does not decrease the p-adic valuation of an element of K
(pf)
∞ [[t, t1, . . . , te]] ∩

Acris,Kpf (⊂ BdR,K), we obtain ∇(j)

t
(pNUi) ∈ Md(Acris,Kpf) (1 ≤ i, j ≤ e). Thus,

it follows that we have pN(k1+···+ke)cjkl ∈ Acris,Kpf and pN(k1+···+ke)φN+1(cjkl) ∈
Acris,Kpf . Define {fj}

d
j=1 ⊂ Bcris,K ⊗Qp V by

fj =
∑

0≤k1,...,ke

(−1)k1+···+ke
tk11 · · · tkee

k1! · · · ke!tk1+···+ke
φN+1((∇(1))k1 · · · (∇(e))ke(gj))

where ti = log([b̃i]/bi) denotes the element of Ker (θK0) (⊂ Acris,K). Note that
this series converges in Bcris,K ⊗Qp V for the p-adic topology by (4.2) and thus
fj actually defines an element of Bcris,K ⊗Qp V . Then, it is easy to verify that

we have ∇(i)(fj) = 0 for all 1 ≤ i ≤ e and 1 ≤ j ≤ d by using the Leibniz rule.
Furthermore, by using (4.2) and the fact ∇(0)(φN+1(gj)) = 0, we can deduce that
we have ∇(0)(fj) = 0 for all 1 ≤ j ≤ d.
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(B) {fj}
d
j=1 ⊂ Bcris,K ⊗Qp V is linearly independent over Lpf

0 .

The homomorphism p : Bcris,K ↠ Bcris,Kpf induces

Bcris,K ⊗Qp V ↠ Bcris,Kpf ⊗Qp V : fj 7→ φN+1(gj).

Since {gj}
d
j=1 forms a basis of D̃cris,Kpf(V ) over B̃cris,Kpf and satisfies ∇(0)(gj) = 0,

there exists a finite field extension M/K in K such that {gj}
d
j=1 forms a basis

of Dcris,Mpf(V ) over Mpf
0 . Furthermore, since φ : Dcris,Mpf(V ) → Dcris,Mpf(V ) is

bijective, {φN+1(gj)}
d
j=1 also forms a basis of Dcris,Mpf(V ) over Mpf

0 . Thus, it

follows that {fj}
d
j=1 is linearly independent over Lpf

0 in Bcris,K ⊗Qp V for all finite

extension L/K in K.

(C) Conclusion.

The maps log(γ) and log(βi) (1 ≤ i ≤ e) act trivially on the K0-vector space
generated by {fj}

d
j=1 (because ∇(0)(fj) = 0 and ∇(i)(fj) = 0 for all 1 ≤ i ≤ e and

1 ≤ j ≤ d). This means that ΓK acts on this K0-vector space via finite quotient
and there exists a finite field extension L/K in K such that {fj}

d
j=1 forms a basis

of Dcris,L(V ) over L0 (⊂ Lpf
0 ). □

Remark 4.2. Since the proof is carried out by using the differential operators,
it is not obvious whether we can get rid of the potentiality from the statement of
the main theorem.

5. The p-adic monodromy theorem of Fontaine in the imperfect
residue field case

In this section, we generalize the p-adic monodromy theorem of Fontaine to
the imperfect residue field case. Now, we recall the results of [Be] and [M].

Theorem 5.1. [Be, Corollary 5.22.] Let L be a complete discrete valuation field
of characteristic 0 with perfect residue field of characteristic p > 0 and V be a
p-adic representation of GL. Then, V is a de Rham representation of GL if and
only if V is a potentially semi-stable representation of GL.

Theorem 5.2. [M, Theorem 4.10.] Let K be a complete discrete valuation
field of characteristic 0 with residue field k of characteristic p > 0 such that
[k : kp] = pe < ∞ and V be a p-adic representation of GK. Let Kpf be the field
extension of K defined as before. Then, V is a de Rham representation of GK if
and only if V is a de Rham representation of GKpf.

Since Kpf has perfect residue field, we can apply Theorem 5.1 to the restriction
of V to GKpf .

Proof of Corollary 1.2. V is a de Rham representation of GK if and only if V
is a de Rham representation of GKpf by Theorem 5.2. Next, V is a de Rham
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representation of GKpf if and only if V is a potentially semi-stable representation
of GKpf by Theorem 5.1. Finally, V is a potentially semi-stable representation
of GKpf if and only if V is a potentially semi-stable representation of GK by
Theorem 1.1. □
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